
A Novel Workflow Architecture based on Flow Mutation

and Rendering As A Service

submitted in partial fulfillment of the requirements

for the degree of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

by

KS KOUSHIK CS17B013

BRIJESH VORA CS17B031

GUDISEVA BALA SUSHMITHA CS17B033

Supervisor(s)

Dr. Y. Kalidas

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI

MAY 2021

DECLARATION

We declare that this written submission represents our ideas in our own words and

where others’ ideas or words have been included, we have adequately cited and refer-

enced the original sources. we also declare that we have adhered to all principles of

academic honesty and integrity and have not misrepresented or fabricated or falsified

any idea/data/fact/source in my submission to the best of my knowledge. we understand

that any violation of the above will be cause for disciplinary action by the Institute and

can also evoke penal action from the sources which have thus not been properly cited

or from whom proper permission has not been taken when needed.

Place: Tirupati
Date: 06-06-2021

Signature
KS Koushik
CS17B013

Place: Tirupati
Date: 06-06-2021

Signature
Brijesh Vora
CS17B031

Place: Tirupati
Date: 06-06-2021

Signature
Gudiseva Bala Sushmitha
CS17B033

BONA FIDE CERTIFICATE

This is to certify that the report titledA Novel Workflow Architecture based

on Flow Mutation and Rendering As A Service, submitted byKS Koushik, Bri-

jesh Vora and Gudiseva Sushmithato the Indian Institute of Technology, Tirupati,

for the award of the degree ofBachelor of Technology, is a bona fide record of the

project work done by them under our supervision. The contents of this report, in full or

in parts, have not been submitted to any other Institute or University for the award of

any degree or diploma.

Place: Tirupati
Date: 06-06-2021

Dr. Y. Kalidas
Guide
Assistant Professor
Department of Computer
Science and Engineering
IIT Tirupati - 517619

ACKNOWLEDGMENTS

We want to thank our supervisor, Dr Y. Kalidas, for his invaluable supervision, expertise

and support, who has guided us throughout our B.Tech Project. We extend our thanks to

all the other faculty members in the Computer Science department and the members of

Academics office who gave suggestions and critiques to improve our workflow system.

Finally, we thank the M. Tech alumni Animesh Nanda, Vamsi Krishna and Kirtiman

Mishra and MS Scholar Prashanth K, who provided us with the necessary starter code

to continue their project.

i

ABSTRACT

KEYWORDS: Workflow ; Microservices; Flow Mutation; Rendering as a service.

Workflow systems is still an open area of research due to diverse domain scenar-

ios, response time, processing power, storage restrictions, domain specific scenario and

security aspects. In this regard, 14 key features have been identified of any workflow

system as domain agnosticism, content based and dynamic routing, message mutations,

definition of nodes, workflows, their reuse and distribution, flexibility in rendering, user

interface and computational processes, web adaptability,compatibility with low end

devices and internet of things, security and ability to publish and discover functional

capabilities. Formalism based reasoning to discover a fundamental issue in the state of

the art for lack of customizability, as the orchestration logic which is a simple map from

source to target nodes and forces nodes to couple with routing logic has been done. This

issue is solved through a novel concept offlow mutationto expand the scope of routing

logic to modify a message there by making a node more thin. In addition, for user inter-

face nodes,a fast upcoming concept ofrendering as a servicefor interface generation

has been used. For computational nodes, a novel scheme of process-triad for data sci-

ence workflows for model, data and control as services is introduced. The formalism

can be realized in any implementation however a proof of concept is provided using

Python/Flask for use cases for smart campus, computer vision and machine learning

processes. In a nutshell, this report contains a novel workflow architecture backed by

formalism for building of highly flexible, scalable, domainagnostic and light weight

systems to provide plug-n-play nodes, workflows and rendering and security.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF FIGURES ix

LIST OF TABLES x

ABBREVIATIONS xi

1 INTRODUCTION 1

1.1 Motivations . 1

1.2 State of the Art . 2

1.3 Gap Area . 3

1.4 Our contributions. 4

1.5 Organization of the thesis. 4

2 Background 6

2.1 Microservices. 6

2.2 JSON . 6

2.3 Python-Flask . 7

2.3.1 WSGI. 8

2.3.2 Jinja2 . 8

2.4 Bcrypt . 9

2.5 MongoDB. 10

2.5.1 Pymongo. 10

3 Proposed Workflow Engine 12

3.1 Formal representation and reasoning. 12

3.2 Schematic of the system. 14

3.3 Features. 16

iii

3.3.1 Domain Agnosticism. 17

3.3.2 Content-based Routing and Dynamic routing. 17

3.3.3 Flow Mutation . 17

3.3.4 Node Reuse. 18

3.3.5 Rendering as a Service. 18

3.3.6 Distributed Nature of Workflow System. 19

3.3.7 User-Interface Node. 19

3.3.8 Computational Node. 19

3.3.9 Web-API . 19

3.3.10 Light Weight . 19

3.3.11 IoT Enabled. 20

3.3.12 Communication Security. 20

3.3.13 Anonymity of Nodes. 20

3.4 Proof of concept using Python and Flask. 21

4 Results - Course Registration/AddDrop Forms 23

4.1 About this Chapter. 23

4.2 Course Registration. 23

4.3 Add/Drop Course. 26

5 Results - HTTA/HTRA Forms 38

5.1 HTTA/HTRA forms. 38

5.2 General . 41

6 Results - Data Generator based Continual Learning Systemsfor Edge
Devices 50

6.1 About this Chapter. 50

6.2 Remote Data Generation (RDG) architecture. 50

6.2.1 Prediction-Service. 50

6.2.2 Training-Service. 51

6.2.3 Data-Service. 51

6.3 Genetic Algorithm (GA) as a data generator. 51

6.4 General Adversarial Networks (GAN) as a data generator. 54

6.5 Guassian Mixture Models (GMM) as Data Generator. 55

iv

6.6 Original Data as a service. 56

6.7 Implementation Details. 57

7 Conclusions and Future Directions 59

8 Contributions 61

A Installation 62

B Call Flow Graph 64

LIST OF FIGURES

3.1 Schematic diagram of workflow system is depicted in this figure. Green
rectangles indicate key functional nodes for UI, Rendering, Compu-
tations, Workflow and Routing logic. There are 4 database each for
node, workflow, routing logic and domain specific key-value informa-
tion. Routing logic can be dynamically provided. The blue and orange
small circles correspond to messages before and after modification re-
spectively by the workflow module.. 14

3.2 Schematic depiction of a user interface type node. The node processes
any message characterized by user, role and job fields. The interface has
interaction elements of diverse types including: file upload of diverse
types, radio button, check boxes, text boxes and submit button. The
execute button performs message modification and submission to the
workflow. There are convenience features to do-undo and reset. . . . 15

3.3 This is a depiction of sequence of steps in a typical user interaction
node. The green rectangles indicate action modules and the numbered
circles denote the sequence of steps. The orange rectanclesindicate
background modules and their relationship to the foreground interface.
The detailed steps are covered in the manuscript text.. 16

3.4 A depiction of theflow mutation concept. The present workflow sys-
tems consider a router as apostmantype there by leading to higher node
complexity. The figure depicts a complex node coupling with routing
logic and rendering. The figure depicts the effect of decoupling a node
with routing logic and making it acoordinatortype and allowing flow
mutation. A user interface node is processed by the concept of render-
ing as a servicewhere interface itself is dynamically generated.. . . 18

3.5 A highly distributed workflow system is depicted here. (A) Denotes the
workflow system instance which as nodes of two types computational
and interaction type, local workflows and a transfer workflow. It has
databases for nodes and workflows. (B) Denotes one computer having
multiple workflow system instanced deployed and running simultane-
ously. (C) Denotes a scenario of multiple computers, each with a multi-
tude of workflow system instances and inter communicating via transfer
workflows and reciever nodes.. 21

3.6 This figure depicts modules in the proof of concept systembuilt using
python and flask libraries. The user interaction componentsare shown
in green colour. The HTML box corresponds to user visualization and
interaction with graphical elements. Databases for node, workflow and
templates are shown as cylinders. Arrows indicate flow of data or next
steps. The annotations on top of arrows denote specific relationships. 22

vi

3.7 This figure depicts the process_wf.py module built usingpython. Databases
for node and workflow are shown as cylinders. 22

4.1 The figure depicts flow of steps in the scenario for course registration
in an academics scenario.. 24

4.2 The figure depicts the login page with academics credentials. 24

4.3 The figure depicts the dashboard of academics.. 25

4.4 The figure depicts the templates available for academics. 25

4.5 The figure depicts the rendered job for academics. Academics has en-
tered the job name and uploaded the empty Course Registration form. 25

4.6 The figure depicts the rendered course registration job in the Student
Dashboard. 26

4.7 The figure depicts the empty course registration form sent by academics
to the student.. 27

4.8 The figure depicts the rendered course registration job in the Faculty
Adivsor Dashboard, containing the form filled by student.. 28

4.9 The figure depicts the rendered course registration job in the Academics
Dashboard, containing the form filled by student and acknowledged(signed)
by Faculty Advisor. 28

4.10 The figure depicts the directory where all the signed course registration
form is downloaded automatically.. 28

4.11 The figure depicts flow of steps in the scenario for courseadd and drop
in an academics scenario.. 29

4.12 Figure showing adding a new job for add/drop course template . . . 29

4.13 Figure showing academics entering the job name and uploading PDF
form just before sending to students. 29

4.14 Figure showing a message after submit and job is processed. 29

4.15 Figure showing student’s dashboard. 30

4.16 Figure showing empty add-drop course PDF form. 30

4.17 Figure showing student’s dashboard with job just before sending to
course instructor. 31

4.18 Figure showing course instructor’s dashboard. 31

4.19 Figure showing PDF form sent by the student to the courseinstructor 32

4.20 Figure showing course instructor’s dashboard before sending to student 32

4.21 Figure depicting student dashboard with job received from the first
course instructor. 33

4.22 Figure showing PDF from filled by one course instructor. 33

vii

4.23 Figure showing the student dashboard with job receivedfrom course
instructor . 34

4.24 Figure depicting student dashboard with sending to faculty advisor ra-
dio button changed to ’YES’. 34

4.25 Figure showing faculty advisor’s dashboard. 35

4.26 Figure showing PDF form filled by two course instructors. 35

4.27 Figure showing jobs received from students by academics 36

4.28 Figure showing completely filled add/drop form. 37

4.29 Figure showing Student Notifications. 37

5.1 The figure depicts flow of steps in the scenario for HTRA form in an
academics scenario.. 38

5.2 The figure depicts the templates available for academics. 39

5.3 The figure depicts the rendered job for academics. Academics has en-
tered the job name and uploaded the empty HTRA form.. 39

5.4 The figure depicts the rendered HTRA job in the Student Dashboard. 39

5.5 The figure depicts the empty HTRA form sent by academics tothe stu-
dent. 40

5.6 The figure depicts the rendered HTRA job sent by student tothe TA
supervisor. The supervisor can click on the PDF file to view the form. 41

5.7 The figure depicts the notifications of the student.. 41

5.8 The figure depicts the rendered HTRA job sent by TA Supervisor to the
guide. The guide can click on the PDF file to view the form.. . . . 42

5.9 The figure depicts the job containing the completly filledHTRA Form. 42

5.10 Figure showing dashboard ofnxand adding a general template. . . 42

5.11 Figure showing entering job name and role name in general template 43

5.12 Figure depicting different fields of data that can be added 43

5.13 Figure depicting adding text field. 44

5.14 Figure depicting adding drop down field. 45

5.15 Figure showing job after adding text and drop down fields. 45

5.16 Figure depicting adding checkbox field. 46

5.17 Figure depicting adding radio button field. 47

5.18 Figure depicting adding file upload field. 48

5.19 Figure showing job after adding all the possible fields. 48

5.20 Figure showing job after filling in the data in all the fields added . . 49

viii

5.21 Figure showingnzdashboard and the job received fromny 49

6.1 Figure shows the interaction between controller and thedatabase via
workflow system when generating synthetic data using Genetic Algo-
rithms. 52

6.2 Figure shows the shows the retraining process of the system after syn-
thetic data has been generated.. 52

6.3 the block diagram shows the interactions between various services when
either GMM or GAN are used as Data services.. 54

6.4 the figure shows the concept of pseudo rehearsal. the synthetic data of
previous batch, generated using GAN or GMM are interleaved with the
newly arrived training data.. 55

6.5 Figure shows the interactions between the Controller and the database
containing the original data.. 56

B.1 The figure depicts the HTML file inheritance with layout.html as base
HTML file. 64

B.2 The figure depicts routing for basic HTML files. 65

B.3 The figure depicts routing for adding templates and job rendering. . 65

B.4 The figure depicts routing for notifications.. 66

B.5 The figure depicts flow of workflow engine for academic use cases as
an example.. 66

ix

LIST OF TABLES

1.1 14 important features (section 3.3) in any workflow system have been
identified that are critical to its wide spread use, scalability and flexibilty
which are depicted in the tabulation here.. 4

1.2 A comparison of state of the art algorithms with respect to the 14 as-
pects of any workflow system. Here 0 means, the feature is not ad-
dressed and 1 means it is addressed by the corresponding method. . 5

x

ABBREVIATIONS

AWS Amazon Web Services

DAG Directed Acyclic Graph

GA Genetic Algorithm

GAN General Adversarial Networks

GMM Gaussian Mixture Models

GUI Graphical User Interface

PoC Proof of Concept

REST Representational State Transfer

UI User Interface

xi

CHAPTER 1

INTRODUCTION

Workflow management is a very standard requirement in any organization involving

administration, business or scientific processes. A workflow is theoretically equivalent

to a program involving shared functions across diverse programs. A workflow involves

several steps, where each step itself may be a complex business process. These steps or

individual processes are shared among several dozens of workflows and their instances.

The flow of a message or a snapshot of several related messagesamong these processes

constitutes a workflow.

The application domain itself may be varied with different requirements and service

level agreements. The processes range from slow and time consuming steps to real

time processes, less data to several tera-bytes of storage requirements, novice to scien-

tific processes and human-in-loop systems across diverse domain in e-commerce, busi-

ness to business, defense, bioinformatics, administration and several other organization

where processes are involved. There have been several dozens of workflows systems

worldwide over more than last two decades and still newer systems are evolving.

1.1 Motivations

There is a need to understand what is common across all these systems, what is missing

in common amongst the state of the art, why is it that several systems are still evolv-

ing and is there a way to define and address in a formal and theoretical setting and

demonstrate by a proof of concept of the ideas developed. There are hundreds of work-

flow systems worldwide. The main domains are business, administration and scientific.

There is a need to address why there are so many systems and is there a way to address

at the fundamental level. There is also a need to address the lack of customization in

the orchestration.

1.2 State of the Art

Various state of the art workflow systems have been explored and studied. Most of

the literature talked about features like security, scalability and distributed node objects.

Many papers discuss domain specific scenarios like documentmanagement systems

Joseph and Mosweu, life sciences (agricultureLiu et al. (2016) and healthYanget al.

(2019)), scientific workflows (Chenet al. (2015), Ryngeet al. (2012), Mandalet al.

(2015), Tovaret al. (2017), Ludäscheret al. (2006), Mandalet al. (2017) and so on),

sensors in defense scenariosQiu et al. (2019) and education technology (Yang et al.

(2018), Papet al. (2020)).

Some state of the art systems talks about job scheduling. Forexample,Mujezinovíc

and Ljubovíc (2019) schedules workflow in a serverless architecture using producer-

consumer architectural patterns and AWS lambda functions.Caoet al.(2003) discusses

workflow for grid computing and the Fuzzy Time technique for workflow scheduling

and conflict management.Li et al. (2016) talks scheduling in big data analytics and

reuses node objects. Another feature that some systems discuss is the allocation of re-

sources for better performance.Chenet al. (2015) talks about dynamic task clustering

strategies to merge several short tasks into a single job andto improve the runtime per-

formance of workflow executions in faulty execution environments.Tovaret al. (2017)

termed this as the job sizing problem and recommends a resource feedback loop that

uses historical information to compute a recommended first allocation for the job sizing

problem. Further,Król et al. (2016) talks about workflow performance profiles, which

analyzes workflow profiles based on time series data collected from real workflow ex-

ecutions. Nawazet al. (2016), Deelmanet al. (2019a), da Silvaet al. (2017), Ceri

et al. (1997) andAmin et al. (2018) discuss high performance computer simulations in

large-scale applications.Nawazet al. (2016), Sánchez-Gallegoset al. (2019) include

support for IoT and IAAS. Cloud execution specific scenariosare discussed inMandal

et al. (2015), Nawazet al. (2016), Filgueiraet al. (2016), Li et al. (2016) andHoffa

et al. (2008) which include I/O and data-intensive workflows.

When it comes to representing a workflow, many state-of-the-art systems use DAG

as the primary medium.Ryngeet al. (2012), Yanget al. (2018), Deelmanet al. (2020),

Mandalet al. (2017) andLinke et al. (2011) talks using loosely-coupled workflows as

2

independent DAGs with each node as task and edge as dependencies. Definite interfaces

for workflows are discussed in some of the literature.Li et al. (2016) uses textual and

GUI interface for entering the requirements. Some workflow systems use user nodes,

computational nodes or both.Joseph and MosweuandLudäscheret al.(2006) have only

user nodes and no computational nodes.Alonsoet al. (1995) uses only computational

nodes.Liu et al. (2016) uses both.Ryngeet al. (2012) andBetancourtet al. (2019)

have an interface for passing messages between the jobs.Alonsoet al. (1995) uses a

persistent message passing system instead of a centralizeddatabase.

Exploring the key features in the literature,Ryngeet al. (2012) uses content-based

routing, but the node decides what to do upon receiving a message and not the routing

logic. Liu et al. (2016), Wolstencroftet al. (2013) andda Silvaet al. (2017) discusses

using nodes as microservices.Brzezínski et al. (2011) andLiu et al. (2016) use work-

flows where nodes are communicating via REST.

1.3 Gap Area

After analysing the various state of the art systems,the common concepts amongst all

the workflow systems have been identified. Further features are also proposed. All

the features are discussed in detail in the section3.3 and described in table1.1. Many

of them not address at the fundamental level the need for nodeindependence from

the knowledge of many a workflow in which it participates while still retaining ability

to take part in decision branches. The literature mainly focuses on distributed node

objects, execution, inter-node communication mechanisms, workflow abstraction as a

graph and user interfaces. The existing methods are compared and contrasted against

these features and critical gap areas are summarized (Table1.2).

Flow mutationis not implemented in any of the examined systems. The concept of

rendering as a servicewhich use introduced in our system, is a recent phenomenon in

the state of the art and only seen in about 6 systems out of 42 systems studied including

our proposed system.

3

Feature number Feature name Abbreviation
1 Domain Agnosticism DA
2 Content based Routing CR
3 Dynamic Routing DR
4 Flow Mutation FM
5 Node Reuse NR
6 Rendering as a Service RS
7 Distributed/Scalable Systems DS
8 User interface Node UN
9 Computational Node CN
10 Web API WA
11 Light Weight LW
12 Internet of things Enabled IE
13 Communication Security CS
14 Node Publication NP

Table 1.1: 14 important features (section3.3) in any workflow system have been iden-
tified that are critical to its wide spread use, scalability and flexibilty which
are depicted in the tabulation here.

1.4 Our contributions

A novel concept offlow mutationcombined with the concept ofrendering as a service

to result a formalism enabling design of highly flexible, scalable and domain agnostic

workflow systems have been proposed. The formalism is generic and any contemporary

technology can be chosen to implement. A proof of concept implementation of the

workflow architecture in Python environment and Flask libraries have been presented.

The PoC is evaluated on a set of 5 scenarios for a smart campus use case, a mimic

smart city use case, machine learning and computer vision use cases and IoT device

connectivity use cases.

1.5 Organization of the thesis

Chapter1 contains introduction to the workflow systems, why it is needed and moti-

vation for building such systems. Also, it contains state ofthe art, gap areas and our

contribution and literature review. Chapter2 includes the background information of

the technologies used - Flask, MongoDB, Python. Chapter3 contains the core architec-

ture, Mathematical formulation and salient features of ourworkflow systems. Chapter

4 contains Use cases pertaining to our workflow system - CourseRegistration and Add

4

S.No Reference 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Feature
coverage

1. Alonsoet al. (1995) 1 0 1 0 0 0 1 0 1 0 1 0 1 1 50%
2. Ceri et al. (1997) 0 0 0 0 0 0 1 0 0 1 1 0 1 0 29%
3. Grefenet al. (2000) 0 0 1 0 0 1 1 0 0 0 1 0 1 1 43%
4. Kappelet al. (2000) 1 0 1 0 0 0 0 0 0 0 1 0 1 0 29%
5. Rinderleet al. (2003) 0 0 1 0 0 1 1 0 0 0 1 0 1 1 43%
6. Caoet al. (2003) 0 0 0 0 0 1 1 1 0 0 1 0 1 1 43%
7. Heiniset al. (2005) 0 1 0 0 0 0 1 0 0 0 1 0 1 1 36%
8. Ludäscheret al. (2006) 0 0 0 0 1 1 1 1 1 0 1 0 1 1 57%
9. Barker and Van Hemert(2007) 0 0 0 0 0 0 0 1 1 0 0 0 1 0 21%

10 . Missieret al. (2008) 0 0 0 0 0 0 1 0 1 0 1 1 1 0 36%
11. Hoffa et al. (2008) 0 0 0 0 0 0 1 0 1 0 0 0 1 1 29%
12. Gil et al. (2010) 1 0 0 0 0 0 1 0 1 0 0 0 1 0 29%
13. Neophytouet al. (2011) 0 0 0 0 0 1 1 0 0 1 0 0 1 1 36%
14. Linke et al. (2011) 0 0 0 0 0 0 1 0 0 1 0 0 0 0 14%
15. Brzezínski et al. (2011) 1 0 0 0 1 0 1 0 0 1 0 0 1 0 36%
16. Ryngeet al. (2012) 0 0 0 0 0 0 1 0 1 0 0 0 1 0 21%
17. Islamet al. (2012) 0 0 0 0 0 0 1 0 1 0 0 0 1 0 21%
18. Wolstencroftet al. (2013) 0 0 0 0 1 0 1 0 1 1 0 0 0 1 36%
19. Pradhan and Joshi(2014) 0 0 0 0 0 0 1 0 0 0 1 0 1 0 21%
20. Mandalet al. (2015) 0 0 1 0 0 0 1 0 1 0 0 0 0 0 21%
21. Chenet al. (2015) 0 0 0 0 0 0 1 0 1 0 0 0 0 0 14%
22. Filgueiraet al. (2016) 0 0 0 0 0 0 1 0 1 0 0 0 0 0 14%
23. Nawazet al. (2016) 0 0 0 0 0 0 1 0 1 0 0 1 1 0 29%
24. Liu et al. (2016) 0 0 0 0 0 0 1 0 1 1 0 0 1 1 36%
25. Li et al. (2016) 1 0 0 0 0 0 1 0 1 1 0 0 0 0 29%
26. Król et al. (2016) 1 0 0 0 0 0 1 0 0 0 0 0 1 0 21%
27. da Silvaet al. (2017) 0 0 0 0 0 0 1 1 1 0 0 0 0 1 29%
28. Tovaret al. (2017) 1 0 0 0 0 0 1 0 0 0 1 0 0 0 21%
29. Mandalet al. (2017) 1 0 1 0 0 0 0 0 0 0 0 0 0 0 14%
30. Simpkinet al. (2018) 0 0 0 0 0 0 1 1 1 0 0 0 1 1 36%
31. da Silvaet al. (2018) 0 0 0 0 0 0 1 0 0 0 0 0 1 0 14%
32. Yanget al. (2019) 0 0 0 0 1 0 1 0 0 0 0 0 0 0 14%
33. Tomsettet al. (2019) 0 0 1 0 0 0 1 1 1 0 0 1 1 1 50%
34. Deelmanet al. (2019b) 0 0 0 0 0 0 1 0 0 0 0 0 1 0 14%
35. Sánchez-Gallegoset al. (2019) 0 0 0 0 0 0 1 0 0 0 0 0 1 0 14%
36. Deelmanet al. (2019a) 0 0 0 0 0 0 1 0 0 0 0 0 1 0 14%
37. Mujezinovíc and Ljubovíc (2019) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 7%
38. Altintaset al. (2019) 0 0 0 0 0 0 0 0 1 1 0 0 1 1 29%
39. Deelmanet al. (2020) 0 0 0 0 0 0 1 0 0 0 0 0 0 0 7%
40. Joseph and Mosweu 0 0 0 0 0 0 1 0 0 0 1 0 0 0 14%
41. Apache(2014) 1 0 1 0 0 0 1 1 0 0 0 0 1 0 36%
42. Proposed Workflow 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100%

Table 1.2: A comparison of state of the art algorithms with respect to the 14 aspects
of any workflow system. Here 0 means, the feature is not addressed and 1
means it is addressed by the corresponding method.

Drop scenario. Chapter5 contains use cases of workflow systems HTTA/HTRA and

general. Chapter6 contains use cases of the data generator in a continual learning sce-

nario. Chapter7 is the final chapter with conclusion and future directions. Chapter8

contains the people who contributed to this project and madeit successfull.

5

CHAPTER 2

Background

Technologies used are python-flask, MongoDB, pymongo, brcypt. Data is represented

as JSON objects. Our architecture is based on Microservices.

2.1 Microservices

A microservice is an independent part of a usually large application, communicating

with others over HTTP via the published API. They are independently deployable and

maintainable. They communicate via the REST API they expose, most often in JSON,

which is light-weight to process and transfer.

Benefits of Microservices are:

1. Continuous Integration and Continuous Deployment (CI/CD).
2. Containerization
3. Programming Language and Framework Independent
4. High Scalability
5. High Availability
6. High Resilience

2.2 JSON

JSON stands for JavaScript Object Notation. It is a light weight data interchange format.

JSON Syntax Rules:

1. Data is in name/value pairs.
2. Data is separated by commas.
3. Curly braces hold objects.
4. Square brackets hold arrays.

JSON Example:

{

"rollno":"B123",

"student_name":"Abc",

"year":"2017",

"programme":"B.tech",

"specialization":"Computer Science and Engineering",

"faculty_advisor":"advisor1"

}

2.3 Python-Flask

Flask is a web application framework written in Python. A collection of libraries and

modules that enables a web application developer to write applications without having

to bother about low-level details such as protocols and thread management is called

Web Application Framework. Flask is based on the Werkzeug WSGI toolkit and Jinja2

template engine.

Example code of python flask is shown below.

from flask import Flask

from flask_cors import CORS

app = Flask(__name__)

app.secret_key = "workflowsystem"

CORS(app)

@app.route(’/dashboard’, methods = [’GET’, ’POST’])

def dashboard():

return "Hello World!"

if __name__ == ’__main__’:

app.run(port=’5000’,debug=True)

7

2.3.1 WSGI

Web Server Gateway Interface (WSGI) has been adopted as a standard for Python web

application development. Werkzeug is a WSGI toolkit, whichimplements requests,

response objects, and other utility functions. This enables building a web framework on

top of it. The Flask framework uses Werkzeug as one of its bases.

Example code of flask request is shown below.

from flask import Flask, request

from flask_cors import CORS

app = Flask(__name__)

app.secret_key = "workflowsystem"

CORS(app)

@app.route(’/dashboard’, methods = [’GET’, ’POST’])

def dashboard():

if request.method == ’POST’:

f = request.form.get(’id’)

return render_template(’dashboard.html’)

if __name__ == ’__main__’:

app.run(port=’5000’,debug=True)

2.3.2 Jinja2

Jinja2 is a popular templating engine for Python. A web templating system combines a

template with a certain data source to render dynamic web pages. It provides a Django-

inspired non-XML syntax but supports inline expressions and an optional sandboxed

environment.

Example code of Jinja rendering template is shown below.

from flask import Flask, render_template

8

app = Flask(__name__)

@app.route(’/’)

def index():

return render_template(’index.html’)

if __name__ == ’__main__’:

app.run(port=’5000’,debug=True)

2.4 Bcrypt

The bcrypt is a password hashing function designed by Niels Provos and David Maz-

ières, based on the Blowfish cipher. The bcrypt function is the default password hash

algorithm for OpenBSD. There are implementations of bcryptfor C, C++, C#, Java,

JavaScript, PHP, Python and other languages.

Example code of creating a hashed password is shown below.

import bcrypt

passwd = b’s$cret12’

salt = bcrypt.gensalt()

hashed = bcrypt.hashpw(passwd, salt)

print(salt)

print(hashed)

Example code of password matching is shown below.

import bcrypt

passwd = b’s$cret12’

salt = bcrypt.gensalt()

hashed = bcrypt.hashpw(passwd, salt)

if bcrypt.checkpw(passwd, hashed):

print("match")

else:

print("does not match")

9

2.5 MongoDB

MongoDB is an open-source document database and leading NoSQL database. Mon-

goDB is written in C++. MongoDB uses JSON-like documents with optional schema.

MongoDB works on concept of collection and document.

Database: Database is a physical container for collections. Each database gets its

own set of files on the file system. A single MongoDB server typically has multiple

databases.

Collection: Collection is a group of MongoDB documents. It is a similar to Rela-

tional Database Management System (RDBMS).

Document: A document is a set of key-value pairs. Documents have dynamic

schema.

2.5.1 Pymongo

Python needs a MongoDB driver to access the MongoDB database. That MongoDB

driver is pymongo. PyMongo is a Python distribution containing tools for working with

MongoDB, and is the recommended way to work with MongoDB fromPython.

from pymongo import MongoClient

#Creating a pymongo client

client = MongoClient(’localhost’, 27017)

records = client[’kali_db’][’users’]

#check if userID exists in database

userID_found = records.find_one({"userID": "xyz"})

To insert data in database

records.insert_one({"userID": "abc"})

10

#To delete data in database

records.delete_one({"userID": "pqr"})

To update one record in databse

records.update_one({’userID’:userID},

{"$set":{’password’:new_password}})

11

CHAPTER 3

Proposed Workflow Engine

A formal representation of the system and interpretation isprovided for deeper under-

standing of any workflow system and our specific modifications. The representation is

agnostic of technology and any state of the art mechanisms may be used to deploy. For

the proof of concept and initial working model, the formalism in Python using Flask

micro-services framework have been implemented.

3.1 Formal representation and reasoning

Here a formal representation of the system is presented and its capability in terms of

flexibility and scalability.

1. LetM denote set of all messages, 2V×D

2. HereV is domain specific vocabulary,D is data andM is in key-value format
3. LetN denote set of node identifiers
4. LetW denote set of workflow identifiers
5. LetBN : N×M → [N×M×A] denote set of behaviours
6. Here one message can trigger several actions, therefore list abstraction is used
7. The symbolA denotes an action,
8. Let,A : N×M →W×M denote purpose of the action
9. Let,R : M → M for changing contents of a message using rendering as a service

10. Rendering as a service:corresponds to modification of a message upon user
interaction,m′ = R(m)

11. Let,BW : W×M → [N×M] denote workflow behaviour, to map a message to a
list of nodes

12. Flow mutation: (∃w∈W,m∈ M),∃(m′ 6= m) : (n′,m′) ∈ L,L = BW(w,m)
13. The key point here is presence ofW×M → N×M instead ofW×M → N
14. LetEN = {(n,m)|n∈ N,m∈ M} denote node event store
15. LetEW = {(w,m)|w∈W,m∈ M} denote workflow event store
16. Letnφ ∈ N, wφ ∈ W andmφ ∈ M denote no operation node and workflow and

empty message respectively
17. Fornφ , the functionality is(wφ ,m) = BN(nφ ,m)
18. Forwφ , the functionality is(nφ ,m) = BW(wφ ,m)[0]
19. (Note here thatnφ ,wφ are only for theoretical completeness, there are not actual

function calls in any implementation)

The workflow and node daemons are shown in (Algorithm1) and (Algorithm2)

respectively. Some of the key inferences from thenode processare as here.

• Node behaviour is plug and play, i.e.BN can be dynamically configured
• The actions upon a given message,A can be of two types - computational or user

interaction
• Rendering as a Service:If it is user interaction type,R(m) can be used to render

a messagem∈ M and generate modified content

Some of the key inferences from theworkflow processare here.

• Workflow behaviour is plug and play, i.e.BW can be dynamically configured
• Content drives the routing, i.e.BW(w,m), m∈ M becomes critical
• Flow mutation: The workflow can modify the message, i.e. in[(n′,m′) . . .] =

BW(w,m), ∃m′ 6= m can be true

Algorithm 1: Node Process

1 Workflow Daemon:
2 EW = EW+< wφ ,mφ >

3 //Infinite iteration
4 while |EW|> 0 do
5 if ∃e∈ EW : e[0] 6= wφ then
6 EW = EW −e
7 w= e[0]
8 m= e[1]
9 NL= BW(w,m) //get list of nodes to which this message is mapped

10 while (∀(n′,m′) ∈ NL) do
11 EN = EN +(n′,m′) //goes to node event store

Algorithm 2: Workflow Process

1 Node Daemon:
2 EN = EN+< nφ ,mφ >

3 //Infinite iteration
4 while |EN|> 0 do
5 if ∃η ∈ EN : η[0] 6= nφ then
6 EN = EN −η
7 n= η[0]
8 m= η[1]
9 AL= BN(n,m) //obtain a list of actions

10 while (∀(n′,m′,α) ∈ AL) do
11 //applying actionα(·, ·)
12 // α can be user interaction or computational type
13 if α is user interactionthen
14 m′′ = R(m′) //using rendering as a service

15 else
16 //whenα is computational type
17 m′′ = χ(n′,m′) //whereχ(·, ·) is a computational node

18 (w′,m′′) = α(n′,m′)
19 EW = EW +(w′,m′′) //goes to workflow event store

13

3.2 Schematic of the system

The formalism may be realized in diverse platforms and application technologies. A

software design perspective of the formalism is presented in the schematic (Figure3.1).

The workflow system focuses on flexibility and scalability are addressed at fundamental

level of message routing and processing. In this architecture there are two types of nodes

- (i) user interaction processes and (ii) computational processes.

Figure 3.1: Schematic diagram of workflow system is depictedin this figure. Green
rectangles indicate key functional nodes for UI, Rendering, Computations,
Workflow and Routing logic. There are 4 database each for node, workflow,
routing logic and domain specific key-value information. Routing logic can
be dynamically provided. The blue and orange small circles correspond to
messages before and after modification respectively by the workflow mod-
ule.

The workflows dynamically load routing logistics. This is the plug-n-play mecha-

nism that brings in enormous flexibility to customize for diverse domains and at scale.

A reload of the routing logic does not require the restart of asystem, it can be done on

the fly.

The routing logic modifies the message content as well, whichis called asflow

mutation. This novel concept offlow mutationoffers flexibility to control workflows

14

across scenarios. This also decouples a node from the knowledge of workflows in which

it is participating.

A user interface node offers a friendly graphical interfaceto the end user. The

interaction elements are customizable and can be dynamically added or deleted. A

schematic of the user interface node is shown in (Figure3.2).

Figure 3.2: Schematic depiction of a user interface type node. The node processes any
message characterized by user, role and job fields. The interface has in-
teraction elements of diverse types including: file upload of diverse types,
radio button, check boxes, text boxes and submit button. Theexecute button
performs message modification and submission to the workflow. There are
convenience features to do-undo and reset.

The user interface node has the following type of interactions, and can be extended

based on implementation of the formalism in any specific platform.

• Text input
• File upload
• Radio buttons
• Check boxes
• Submit buttons
• Other may be added as required in any specific implementation.

The node execute button, confirms the data entered by the userand send themodified

messageto the workflow. The back-end workflow system then processes the message

and routes the messages with or without modification to subsequent nodes and the sys-

tem continues.

A user interface node interacts with a number of back-end modules. As the node

15

becomes agnostic of the workflows, it becomes thin. A thin node still requires visual-

ization of content and interaction with user. This visualization as well can be off-loaded

as this is a common requirement across nodes.Rendering as a serviceis made. The

sequence of interactions with backend system are shown in (Figure3.3) in adashboard.

• STEP 1: Login. Authentication happens in this step.
• STEP 2: Selection of role and job.
• STEP 3: Visualization of the rendered message by the Rendering Service
• STEP 4: User interaction via graphical elements
• STEP 5: Node execution

In addition, there are further options available to the usersuch as,

• STEP 6: Add new/Delete/Modify jobs
• STEP 7: Add new/Delete/Modify templates
• STEP 8: Add new /Delete/Modify routing logistics

Figure 3.3: This is a depiction of sequence of steps in a typical user interaction node.
The green rectangles indicate action modules and the numbered circles de-
note the sequence of steps. The orange rectancles indicate background mod-
ules and their relationship to the foreground interface. The detailed steps are
covered in the manuscript text.

3.3 Features

16

3.3.1 Domain Agnosticism

All the workflow systems that have ever been built, were builtfor a particular domain or

purpose. For example, a workflow system built for a pharmaceutical industry may not

be suitable for an automobile industry as their requirements vary. The proposed engine

is agnostic of all those and can cater to any use case. It provides all the bare basics upon

which one can customize. The engine just acts as a ‘router’ ofinformation from node

to node, which routes based on some of the parameters of the content. The engine is

unaware of this and just routes the information.

3.3.2 Content-based Routing and Dynamic routing

In traditional workflow systems, there’s no way to load routing conditions dynamically

and content-based routing was not available. But here that problem is solved using

a separate module that can be loaded dynamically, which has all the decision-making

logic for content-based routing. Content-based routing means the nodes to which the

information be forwarded will be decided based on some of theparameters in the infor-

mation. And all that decision-making logic will be in a separate module and is loaded

dynamically based on requirement. Those modules can be separate for each workflow

and can be loaded based on requirement. They have a special function which will be

called in the central engine. The received data in the central engine and the previous

node’s ID are passed to the function and it returns a list of nodes to which the data has

to be sent.

3.3.3 Flow Mutation

If a node is participating in multiple workflows, then corresponding to each one, there

should be a piece of logic inside the node. This increases thecomplexity of a node and

its scalability is at stake. However, in our architecture, thepostmanlevel orchestrator

is upgraded to acoordinator. The coordinator not only looks at the message, it also

modifies it as required (Figure3.4). The node becomes so simple that, a typical user

interface node needs to just render action fields to a user. This enables rendering itself

as a service.

17

Figure 3.4: A depiction of theflow mutation concept. The present workflow systems
consider a router as apostmantype there by leading to higher node com-
plexity. The figure depicts a complex node coupling with routing logic and
rendering. The figure depicts the effect of decoupling a nodewith routing
logic and making it acoordinatortype and allowing flow mutation. A user
interface node is processed by the concept ofrendering as a servicewhere
interface itself is dynamically generated.

In the formal representation, the orchestration logic can modify the content leading

to plug-n-play of workflows. In the proposed architecture there are three main aspects:

(i) routing logic modifies the message, (ii) rendering as a service and (iii) two types

of nodes. These aspects combined with micro services framework and plug-n-play

workflow and node models, lead to a highly customizable workflow system.

3.3.4 Node Reuse

The nodes in the system are like functions in a programming language. Reusable. Be-

cause a node does its job irrespective of the previous node and the next, a node can be

included in a number of workflows simultaneously. All the jobs will be carried out one-

by-one or in parallel if the node is a compute node and can be multi threaded.

3.3.5 Rendering as a Service

The service for rending offers rich types of interface elements such as file upload, text

boxes, radio buttons, check boxes and submit buttons. Theseinteraction elements can

be dynamically added as the message flows through the workflowsystem. Hence there

18

is a mechanism where each message comes with its own rendering template as an at-

tribute for consumption by graphical nodes

3.3.6 Distributed Nature of Workflow System

The system itself is highly distributed (Figure3.5). On a single computer, there can be

several instances of workflow system. On multiple computers, the multitude of work-

flow system instances can talk to each other. The inter communication happens between

a local and a remote system through use oftransfer workflows. The transfer workflows

remit messages in a receiver node dedicate in each workflow system instance for receipt

of message.

3.3.7 User-Interface Node

User should be able to view and edit the job information in a graphic user interface.

Information gathered should be parsed and sent to workflow engine.

3.3.8 Computational Node

The workflow should be able to do computation without user interaction. Computa-

tional nodes are used in machine learning scenario. Refer chapter 55 for use cases on

computational nodes.

3.3.9 Web-API

All the nodes communicate over HTTP via REST API, which makesa nice abstraction

of resources. The entire information that flows will be in JSON making it really easy

and light-weight to store and process.

3.3.10 Light Weight

The system is very lightweight can be executed on low end devices such as raspberry pi

in addition to server grade execution. (20 lines of code,less than 1MB of RAM required).

19

The user interface is flexible where rendering can also be obtained from other systems.

The proof of concept implementation is light weight which enablesedge IoT devices to

run mini workflows and act as mini nodes and participate in a larger workflow system

3.3.11 IoT Enabled

In today’s modern world with a wide variety of scenarios, IoTs have become an integral

part of business processes. They collect data from the physical world and help us take

actions accordingly or may be give it certain instructions to do an operation. Surveil-

lance cameras, TVs, air conditioners and projectors., havebecome internet-connected.

Including IoTs in workflows could be quite useful in many use cases. ‘Smart Campus’

and ‘Smart City’ are two of the biggest use cases for workflowswith IoTs. Traffic

management in a city and academic activities in a Universitycan be simplified with

a workflow which has support for IoTs. Unfortunately, not allworkflow systems in

the market support IoT devices. And since the proposed system does not differentiate

between nodes, IoTs can be seamlessly integrated in any workflow.

3.3.12 Communication Security

Security can be an issue while transferring information. But as in the proposed architec-

ture, all the communication can happen on top of HTTPS which makes it secure. Also,

explicit encryption can also be done at the nodes and transfer the information.

3.3.13 Anonymity of Nodes

One of the most important features of the proposed engine is the anonymity of the nodes.

The nodes are anonymous to each other as they don’t interact with each other. A node

receives information from the central engine and irrespective of the previous node, this

node does its job and sends its response back to the central engine. In this way, no node

will know the existence of other nodes.

20

Figure 3.5: A highly distributed workflow system is depictedhere. (A) Denotes the
workflow system instance which as nodes of two types computational and
interaction type, local workflows and a transfer workflow. Ithas databases
for nodes and workflows. (B) Denotes one computer having multiple work-
flow system instanced deployed and running simultaneously.(C) Denotes
a scenario of multiple computers, each with a multitude of workflow sys-
tem instances and inter communicating via transfer workflows and reciever
nodes.

3.4 Proof of concept using Python and Flask

The formalism is implemented in Python environment using Flask libraries for micro

services. A schematic view of the framework is shown in (Figure 3.6). Rendering

service is provided as a function inside views.py file. Templates are stored in a template

database, out of which one selected and loaded by the rendering service. The render

service uses Flask render_template API to generate HTML by processing input JSON

objects. The file process_wf.py executes routing logic, which is the workflow engine. It

can load on the fly routing codes. The exclusive schematic forworkflow engine is shown

in (Figure3.7). The process_wf.py fetches the routing codes and the corresponding

services functions and modifies the jobs and messages. The modified jobs are deleted

from workflow database and inserted into the node database.

21

Figure 3.6: This figure depicts modules in the proof of concept system built using
python and flask libraries. The user interaction componentsare shown in
green colour. The HTML box corresponds to user visualization and interac-
tion with graphical elements. Databases for node, workflow and templates
are shown as cylinders. Arrows indicate flow of data or next steps. The
annotations on top of arrows denote specific relationships.

Figure 3.7: This figure depicts the process_wf.py module built using python. Databases
for node and workflow are shown as cylinders

22

CHAPTER 4

Results - Course Registration/AddDrop Forms

4.1 About this Chapter

The proof of concept and the core architecture discussed previously are verified in this

and the subsequent two chapters by demonstrating various use cases incorporating both

user nodes and computational nodes. Three types of use casesare shown here. They

are:

1. Academic use cases involving processes course registration, adding or dropping
courses, exam invigilation duties, half-time teaching andresearch assistantship
forms. Implementing such use cases is part of the Smart Campus System, making
such institute processes seamless.

2. A simple general use case to illustrate adding dynamic data to the user node.
3. Data Generation involving computation nodes.

The proposed system works on top of HTTPS, a secure encryptedconnection over

the internet, to eliminate any security issues. The proposed system implements REST-

ful web services, and every node will act as a micro service and irrespective of the

technology used at the node. Since the REST paradigm enforces the abstraction of re-

sources, nodes can communicate with the central engine without any problem. All the

communication occurs in JSON form, a universally accepted format for data sharing,

which is also lightweight for processing.

4.2 Course Registration

This use case involves an example of a smart campus scenario where students enrol for

courses, the sequence is depicted in fig.4.1.

First, the academic section need to login user their username and password as shown

in fig. 4.2. The corresponding dashboard is shown in fig.4.3. On the right, there is a

button called as Add Job. On clicking, various templates aredisplayed. These templates

are accessible only to the academics. Click on course registration as shown in fig.4.4.

Figure 4.1: The figure depicts flow of steps in the scenario forcourse registration in an
academics scenario.

In this job which is created, academics should give a job name, branch and an empty

course registration form as shown in fig.4.5. On clicking the submit button, the job is

sent to all the students.

Figure 4.2: The figure depicts the login page with academics credentials.

Now, students can login and see course registration job fig. (4.6) and the empty

course registration form that the academics have sent to them fig. (4.7). Students can

fill this PDF form with the necessary details along with theirsignature. On submit, the

job will be sent to that corresponding faculty advisor.

Now, the faculty advisor checks the PDF form signed by the student fig. (4.8), signs

it and executes the job. This job is sent to academics fig. (4.9). The student gets a

notification that the faculty advisor has sent this job to theacademics.

24

Figure 4.3: The figure depicts the dashboard of academics.

Figure 4.4: The figure depicts the templates available for academics.

Figure 4.5: The figure depicts the rendered job for academics. Academics has entered
the job name and uploaded the empty Course Registration form.

25

Figure 4.6: The figure depicts the rendered course registration job in the Student Dash-
board.

An additional service node, acads_bg.py can be used to download all the files in a

structured directory as shown fig. (4.10).

4.3 Add/Drop Course

This use case involves an example of a smart campus scenario where students enrol

for courses and later change their decision is depicted in fig. 4.11. The scenario is as

follows:

First, the academic section logs in using their username andpassword. The corre-

sponding dashboard is displayed. The academics can add a newjob for add/drop course

from the preexisting templates as shown in fig.4.12. In this template job, the academics

can enter the job name and upload an empty add/drop course PDFform as shown in fig.

4.13. On submit, the job is sent to all the students. The message after submit is as

shown in fig.4.14. There is a database collection containing all the student details like

name, roll number, faculty advisor, branch, year, batch. Now, students can login and see

add/drop course job (fig.4.15) and the empty add/drop form that the academics have

sent to them (fig.4.16). Students can fill this PDF form with the details of courses,cor-

responding instructors and other information along with their signature. The students

also have to enter the course ID for which the corresponding instructor’s signature is

required and upload the filled form as shown in fig.4.17. On submit, the job will be

sent to that corresponding instructor.

26

Figure 4.7: The figure depicts the empty course registrationform sent by academics to
the student.

27

Figure 4.8: The figure depicts the rendered course registration job in the Faculty Adiv-
sor Dashboard, containing the form filled by student.

Figure 4.9: The figure depicts the rendered course registration job in the Academics
Dashboard, containing the form filled by student and acknowledged(signed)
by Faculty Advisor.

Figure 4.10: The figure depicts the directory where all the signed course registration
form is downloaded automatically.

28

Figure 4.11: The figure depicts flow of steps in the scenario for course add and drop in
an academics scenario.

Figure 4.12: Figure showing adding a new job for add/drop course template

Figure 4.13: Figure showing academics entering the job nameand uploading PDF form
just before sending to students

Figure 4.14: Figure showing a message after submit and job isprocessed

29

Figure 4.15: Figure showing student’s dashboard

Figure 4.16: Figure showing empty add-drop course PDF form

30

Figure 4.17: Figure showing student’s dashboard with job just before sending to course
instructor

The instructor can now login and see the pending add/drop jobs from the students(fig.

4.18). The instructor can verify the PDF form signed by the student(fig. 4.19) and up-

Figure 4.18: Figure showing course instructor’s dashboard

load their form after signing(fig.4.20). On execute, this job will be again sent to the

student. The student can now see the job and(fig.4.21) only verify the add/drop PDF

form(fig. 4.22). After verification, the student can now edit the course ID again and

send this form to another instructor as needed. It is to be noted that the student can

send this form to his/her faculty advisor at any time. By default, this option is given as

’NO’. After all the course instructor(s) sign the add/drop course PDF form, the student

can now select ’YES’ for sending it to the faculty advisor. Let’s say the student needs

31

Figure 4.19: Figure showing PDF form sent by the student to the course instructor

Figure 4.20: Figure showing course instructor’s dashboardbefore sending to student

32

Figure 4.21: Figure depicting student dashboard with job received from the first course
instructor

Figure 4.22: Figure showing PDF from filled by one course instructor

33

the signature of another course instructor. The student changes the course ID, sends to

instructor, the instructor verifies, signs and on submit, the job goes to student again(fig.

4.23). This can be repeated many times as shown in fig.4.11. Finally, student selects

Figure 4.23: Figure showing the student dashboard with job received from course in-
structor

’YES’ and submits to faculty advisor(fig.4.24).

Figure 4.24: Figure depicting student dashboard with sending to faculty advisor radio
button changed to ’YES’

Finally, the faculty advisor logs in(fig.4.25), checks the PDF form signed by the

student(fig.4.26) and the course instructor(s), signs it, uploads the form and submits the

job. This job is sent to academics. Under the role, add/drop course forms, academics

34

Figure 4.25: Figure showing faculty advisor’s dashboard

Figure 4.26: Figure showing PDF form filled by two course instructors

35

can see all the students’ forms as shown in fig.4.27. The PDF file received is completely

Figure 4.27: Figure showing jobs received from students by academics

filled(fig. 4.28). The student can view all the notifications to get acknowledged that the

faculty advisor has sent this job to the academics. This is shown in fig. 4.29. Similar to

course registration, An additional service node, acads_bg.py can be used to download

all the files in a structured directory.

36

Figure 4.28: Figure showing completely filled add/drop form

Figure 4.29: Figure showing Student Notifications

37

CHAPTER 5

Results - HTTA/HTRA Forms

5.1 HTTA/HTRA forms

This use case involves an example of a smart campus scenario where students fill the

HTRA/HTTA form, the sequence is depicted in Fig.5.1.

Figure 5.1: The figure depicts flow of steps in the scenario forHTRA form in an aca-
demics scenario.

First, the academic section need to login user their username and password. The

corresponding dashboard. On the right, there is a button called as Add Job. On clicking,

various templates are displayed. These templates are accessible only to the academics.

Click on HTRA as shown in Fig.5.2. In this job which is created, academics should

give a job name and an empty HTRA form as shown in Fig.5.3. On clicking the submit

button, the job is sent to all the scholars.

Now, the scholars can login and see the HTRA job (Fig.5.4) and the empty HTRA

form that the academics have sent to them (Fig.5.5). Students can fill this PDF form

with the necessary details along with their signature. On submit, the job will be sent to

that corresponding TA Supervisor.

Figure 5.2: The figure depicts the templates available for academics.

Figure 5.3: The figure depicts the rendered job for academics. Academics has entered
the job name and uploaded the empty HTRA form.

Figure 5.4: The figure depicts the rendered HTRA job in the Student Dashboard.

39

Figure 5.5: The figure depicts the empty HTRA form sent by academics to the student.

40

Now, the TA Supervisor checks the PDF form signed by the student (Fig. 5.6),

signs it and executes the job. This job is sent to corresponding guide. The student gets

a notification that the TA Supervisor has sent this job to the guide (Fig.5.7).

Figure 5.6: The figure depicts the rendered HTRA job sent by student to the TA super-
visor. The supervisor can click on the PDF file to view the form.

Figure 5.7: The figure depicts the notifications of the student.

Now,guide can check the PDF form signed by the student and TA Supervisor (Fig.

5.8), signs it and executes the job. This job is sent to academics(Fig. 5.9). The student

gets a notification that the guide has sent this job to the academics. An additional

service node, acads_bg.py can be used to download all the files in a structured directory

as shown in Course Registration use case.

5.2 General

For a general template, let’s consider a simple use case. There are three nodes:nx, ny

andnz. The routing takes place as:nx → ny → nz. First,nx is logged in. Add a general

template as shown in fig.5.10.

41

Figure 5.8: The figure depicts the rendered HTRA job sent by TASupervisor to the
guide. The guide can click on the PDF file to view the form.

Figure 5.9: The figure depicts the job containing the completly filled HTRA Form.

Figure 5.10: Figure showing dashboard ofnxand adding a general template

42

Job name and role name can be added as required(fig.5.11). On submit, the job

Figure 5.11: Figure showing entering job name and role name in general template

gets sent to nodeny. Logging in tony, the role and job are displayed.

Dynamic data which could be of text, dropdown, checkbox, radio button or file type,

an be added usingAdd Databutton. This is shown in fig.5.12. As an example, text(fig.

Figure 5.12: Figure depicting different fields of data that can be added

5.13) and drop down(fig.5.14) are added as shown in fig.5.15. Also, checkbox(fig.

5.16), radio(fig. 5.17), file(fig. 5.18) fields are added as shown in fig.5.19. There

is a remove button to remove the fields as needed. The fields arefilled as shown in fig.

5.20and on submit, the job is sent tonz. nz logs in and sees the job that has been sent

by ny(fig. 5.21).

43

Figure 5.13: Figure depicting adding text field

44

Figure 5.14: Figure depicting adding drop down field

Figure 5.15: Figure showing job after adding text and drop down fields

45

Figure 5.16: Figure depicting adding checkbox field

46

Figure 5.17: Figure depicting adding radio button field

47

Figure 5.18: Figure depicting adding file upload field

Figure 5.19: Figure showing job after adding all the possible fields

48

Figure 5.20: Figure showing job after filling in the data in all the fields added

Figure 5.21: Figure showingnzdashboard and the job received fromny

49

CHAPTER 6

Results - Data Generator based Continual Learning

Systems for Edge Devices

6.1 About this Chapter

Neural networks suffer from Catastrophic forgetting problem when deployed in a con-

tinual learning scenario. Pseudo rehearsal is a technique where a generator is used to

synthetically generate training data of the previous task to retrain the neural network to

prevent forgetting. Edge devices usually have severe computational and memory con-

straints which limits the deployment of pseudo rehearsal schemes directly on them. In

this chapter, a continual learning system that deploys the generator on a server and reg-

ularly updates the neural networks deployed on the edge whenever required is demon-

strated.

6.2 Remote Data Generation (RDG) architecture

This scalable and flexible system, to implement synthetic data generation is proposed as

a service, that is called as Remote Data Generation (RDG) architecture and it consists

of a Data service, Prediction service, Training service, and Controller service. Two

types of nodes are possible in this workflow: User-Interface(UI) nodes such as the

controller, where the parameters of the model are configured, and computational nodes

such as Prediction service, Training service, Data service. The role of each service is as

follows.

6.2.1 Prediction-Service

The prediction services’ primary function is to generate predictions for given input data

using the deployed neural network. In case of a federated learning setting, the predic-

tion service could be running on the edge device. And in case of a centralized setting,

the prediction service also could be running on the cloud using a copy of the deployed

neural network to improve latency times. The prediction service plays an integral role

when generating synthetic data using Genetic Algorithms. The synthetic data is gener-

ated by constant interactions between the data service and the prediction service.

6.2.2 Training-Service

Training-service is designed to retrain the model using thesynthetic-data generated by

Data service. It updates the model, and that updated versioncan be deployed to the

edge devices. One significant advantage of implementing a separate microservice for

training the neural networks is that, while other services can be deployed on cheaper

hardware with low computational capabilities, the training service can be deployed on

specialized hardware that are optimized for training processes.

6.2.3 Data-Service

Data Service’s primary function is to generate synthetic data or provide original data

for retraining neural networks deployed on edge devices. Ittakes labels or class as

input and produces respective data as output. The data service could consist of a data

generator like GAN, GMM or Genetic Algorithms or could be a database consisting of

original data directly.

6.3 Genetic Algorithm (GA) as a data generator

This is an micro-service style implementation of the systemproposed bySuri and

Yeturu(2020), where synthetic data is generated by a series of communications between

Genetic Algorithms and the deployed neural network.

To generate the synthetic data for a target class, the Genetic Algorithm begins with

a random set of images which are then given to the deployed network for prediction.

the softmax confidence of the network on these images for the target class is considered

as their fitness scores. the fittest 24% individuals are sent to the next generation, where

a series of mutation and cross-over operation are followed to populate the next genera-

51

Figure 6.1: Figure shows the interaction between controller and the database via work-
flow system when generating synthetic data using Genetic Algorithms.

Figure 6.2: Figure shows the shows the retraining process ofthe system after synthetic
data has been generated.

52

tion. This is repeated until the organisms of a given generation reach a certain fitness

threshold.

To implement this technique, a Genetic Algorithm is implemented as the generator

service. the GA service generates synthetic images and sends them to the prediction

service via the workflow. the prediction service predicts the score using the deployed

model and returns it to the workflow system. GA service uses the predicted scores to

generate a new batch of images. the controller specifies thenumber of generationsup to

which the service should generate images. Each generation will generate images where

the fitness of population is greater than previous generation’s.

Figure6.1 shows the steps involved in generating synthetic data from atime and

event perspective. A step-wise list of interactions between the services is provided

below:

• STEP 1: At time stepT1, thecontroller node requests to begin the training via
workflow and the GA service generates the first batch of images.

• STEP 2: AtT2, images or synthetic samples that are generated by the GA service
are sent to Prediction Service via the workflow.

• STEP 3: AtT3, the Prediction service receives the images and then returns the
prediction scores for all the images.

• STEP 2 and 3 are repeated until a certain fitness threshold isreached or until the
number of iterations is finished.

• STEP N-2: AtTN−2, the score for each synthetic sample is sent to the GA service.
• STEP N-1: AtTN−1, the GA Service realising that the fitness threshold has been

reached will send the final synthetic data to the controller via the workflow.
• STEP N: At time stepTN, the workflow routes the synthetic data to the controller

and message is sent to GA service to stop the training.

All the request which happen between nodes/services and workflow happen as post

requests and data flows as JSON objects. An independent session is opened between the

GA service and prediction service to increase the throughput of the system by allowing

simultaneous executions for multiple systems. Figure6.2shows the steps involved after

this synthetic data is received by the controller from the workflow. the controller has

two jobs to do: (1)To start the session; (2) To evaluate the quality of the synthetic data

generated. After receiving the synthetic data, the controller is presented with an option

to whether or not retrain the model on this new synthetic data. On being satisfied with

the quality of the generated data, the controller can push the synthetic data along with

the command to "retrain" the model to the workflow system. theworkflow system then

routes the synthetic data to theTraining service.

53

A copy of the synthetic data sent is also sent to thedata backup servicethat stores the

synthetic data for future use. If the generated images’ fitness score is not high enough,

then the controller instructs the workflow (by setting the message "delete_data") to

delete the synthetic data. Training service will retrain the model based on the synthetic

data and upgrade the model. Now this upgraded model can be sent to edge devices for

deployment.

6.4 General Adversarial Networks (GAN) as a data gen-

erator

Figure 6.3: the block diagram shows the interactions between various services when
either GMM or GAN are used as Data services.

Shin et al. (2017) suggested use of Generative Adversarial Networks (GANs) as

generatorsto generate synthetic data. In this technique, instead of storing the original

data, a Generative Adversarial Network is trained until it can synthetically recreate the

original data. This fully trained GAN is stored in a databaseand the original data is

then discarded. This technique greatly saves space as storing a GAN consumes much

lesser space compared to storing entire original data. In the beginning of the process,

the controller sends the request to workflow with the required target labelsas shown in

Figure6.3.

Theworkflow systemthen sends the request todata servicewhich in this case has a

54

Figure 6.4: the figure shows the concept of pseudo rehearsal.the synthetic data of pre-
vious batch, generated using GAN or GMM are interleaved withthe newly
arrived training data.

GAN in it. the request is send as a JSON object which has message field with various

flags and variables that describe the desired properties of the synthetic data.

Data service then generates the synthetic images upon request and sends back to

the workflow system. Since the data generated by GAN is unlabelled, the workflow

system sends the synthetic data to the prediction service where it predicts the labels of

the generated samples. these predictions are sent back to the workflow. the workflow

system finally filters out the samples belonging to the targetclasses based on the newly

generated labels and sends these samples to the controller for retraining.

6.5 Guassian Mixture Models (GMM) as Data Genera-

tor

In a Gaussian Mixture model, the dataset is assumed as a collection of n Gaussians. A

Gaussian Mixture Model can also be used as a data generator for pseudo rehearsal. Just

like using GAN as a generator, using of GMM as a generator follows a similar process.

the controller first initiates a request to generate samplesof the target classes with the

workflow. The workflow sends a command to the GMM which is in thedata service, to

start generating synthetic data. the data service respondsback to the workflow system

55

with the synthetic data. As the synthetic data is unlabelled, the workflow systems sends

the data to the prediction service which labels the data. Theworkflow system uses

these labels to filter out the samples belonging to the targetclasses and sends them to

the controller.

6.6 Original Data as a service

Figure 6.5: Figure shows the interactions between the Controller and the database con-
taining the original data.

Robins (1995) proposed the concept ofRehearsal, where the neural network is

trained on original data of the previous task to prevent catastrophic forgetting. However,

storing of entire previous data requires allocation of considerable memory resources

which is not feasible for edge devices. therefore, by deploying the original data on

the cloudas-a-serviceand then requesting the subset of it according to the need of the

deployed model might be an optimal solution. The proposed architecture can be used

in both federated learningBonawitzet al. (2019) setting where each deployed model

is personalized according to the user, or a centralised setting where a central controller

periodically pushes one uniform model to all the edge devices. Figure6.5depicts a cen-

tralised setting where a human controller initiates the request for data. The controllers

request is routed to the workflow, which in turn raises a request with the original data

service. the data service returns the requested data to the workflow system which routes

it to the controller. the controller is then presented with achoice whether to re-train

56

the model on it or not. If the controller chooses to retrain the model, the synthetic data

is passes to thetraining servicewhich loads the model and retrains it. This retrained

network can be considered as the upgraded model which is thenpushed to edge devices

for deployment. In contrast, in a federated learning setting, the retrain service is present

on the edge device itself, where the deployed model is retrained and then deployed.

6.7 Implementation Details

The proposed system was implemented completely in Python language, however, it has

to be noted that the user is free to implement any of web-services using a different as

the proposed system is platform agnostic.Flask library Grinberg(2018) was used to

build and deploy all the web-services whileRequestslibrary was used to implement

the HTTP POST and GET requests.NumpyHarriset al. (2020) was used to represent

and generate synthetic data throughout the system. Representing the data using Numpy

arrays allows us to use the system in non-image applicationsas well. MongoDB was

used to implement all the databases in the system. The reasonfor selecting MongoDB

over SQL is that JSON objects were used to transmit data between different services

in our workflow. As SQL has statictable-orienteddesign where the columns of the

table have to be predefined, inserting JSON objects with varying sizes is not possible.

As MongoDB is the NO-SQL database with little restrictions over the structure of the

database, JSON objects with varying sizes can be inserted into MongoDB with ease.

This flexibility offered by MongoDB influenced our decision to select it over an SQL

based database.Pymongolibrary was used to connect the web services with the Mongo

Database.

All the neural networks were developed in KerasChollet (2015) with Tensorflow

Abadi et al. (2016) running in the back-end. The Gaussian Mixture Model was imple-

mented in SklearnPedregosaet al. (2011). the system was tested on MNIST Digits

LeCun and Cortes(2010) and MNIST FashionXiao et al. (2017) data sets which were

available as a standard data-set in Keras.

The experimentation was carried out on a network of three systems with Intel Core

i7 Quad core. The three systems had 7.7GB, 7.7GB and 16GB of available RAM space.

The systems were connected using a Wi-Fi (802.11n) router with a link speed of 150

57

Mbps between each system and the router. All the micro-services were launched on

different systems.

58

CHAPTER 7

Conclusions and Future Directions

Various state-of-the-art systems have been studied and thecommon features have been

identified. A formalism for representation and study of workflow systems at the funda-

mental level is presented here. The formalism offers highlyscalable and light-weight

architecture to create workflows for any problem scenario involving the concept of mes-

sages and steps between processes. In the proposed system, aworkflow itself can be

dynamically configured and deployed in the runtime without interrupting the execution

of the system. A novel concept offlow mutation in the formalism where the routing

logic can modify the message before delivering it to a node isintroduced. This offers

theoretical power to decouple a node from the routing logic making it very light weight.

Rendering as a servicefor user interface type nodes which are already made thin by

flow mutation concept is introduced. The formalism may be realized in any contempo-

rary technology of choice as demanded by a domain. A proof of concept using Python

and Flask libraries has been presented. The system is scalable to execute on diverse

levels of hardware from high end computers to even low end Iotdevices. In our PoC

implementation any node can be published and discovered by including its identifier

in the workflow messages. The nodes and workflows may be distributed across sys-

tems and can be run on local machines in a secure way. Communication between nodes

and workflows happens through micro service invocations making the system extremely

flexible and adaptable. The usefulness of the system in smartcampus and data genera-

tion use cases has been evaluated. This shows the usefulnessof our formalism to build

a truly domain agnostic workflow system.

A formal representation of a workflow system is introduced toinclude the following

concepts -

• Formalism ofFlow Mutation- a novel concept, where router modifies or mutates
the message before delivering to the node

• Flow mutationresults in plug-n-play of workflow routing logic
• Formalism of condition based routing where target node is determined based on

message fields and their values
• Formalism of node actions andrendering as a servicefor user interaction type

nodes

• Event queue, node queue for continuous flow of data in the system
• The formalism offershighly scalable and light-weight architecture to create work-

flows for any problem scenario involving concept of messagesand steps between
processes

• Hence there is a system whereworkflow itself can be dynamically configured and
deployed in the runtime without interrupting the executionof the system

• The formalism is very generic and can be realized in any contemporary technol-
ogy of choice.

• The system has been deployed at:http://services.iittp.ac.in/workflow.

Nodes’ messages are stored on its database. As evident from the workflow architec-

ture, node messages are workflow, workflow processes those messages and sends the

data to the target node. The data floats between workflow and node in units of time to

the workflow engine. The rate of providing this data to the workflow can be calculated

as time taken to process its data.

Appropriate time testing of the system was done and the results were that the sys-

tem processed2000messages in18seconds. Of course, the system depends on network

bandwidth, processor and memory, but the workflow system (database) is highly scal-

able, so throughput can be met with our own requirements.

Future directions: Integration of the workflow system with contemporary blockchain

technology and name based routing protocols can go further into device factors at scale.

On the user convenience front, a graphical interface for routing logic needs to be pro-

vided. The proof of concept system requires better performance analysis on metrics for

communication between nodes and workflows, storage and retrieval and user interface

response. The workflow system needs to provide a dashboard asa smart application and

to be evaluated for battery and processing requirements. A platform for creation, publi-

cation and market store for workflow applications on the general purpose system needs

to be provided to enable widespread use and to spin the wheel of micro-economy over

this open technology. Work is actively underway to provide the features for suspend,

resume, fork, join need to be provisioned in the proof of concept implementation.

Provision for compensatory workflows: Some actions in a workflow need to be un-

done and exception handling is a routine requirement in any administrative or business

scenario. For this purpose, compensatory workflows need to be created. In our pro-

posed architecture the compensatory workflows can be included as any other regular

workflows by just defining the routing logic and handling exception conditions.

60

http://services.iittp.ac.in/workflow

CHAPTER 8

Contributions

The original idea and architecture was proposed by Dr. Kalidas in 2018 and majority

of the core engine for flow mutation and a placeholder code rendering as a service was

written by him. Subsequently 2018 batch M.Tech students experimented with addition

of use cases. Our contributions in discussion with Dr. Kalidas are additional functional-

ity to the core engine for provisioning a working subsystem for rendering as a service,

concept of self service in node, and demonstration of use cases for academics. MS

Scholar Suri Bhasker Sri Harsha also contributed in the synthetic data generation use

case with the workflow.

APPENDIX A

Installation

Installation of our software is pretty easy.

• Install the latest version of Python here:https://www.python.org/downloads/
• Download MongoDB from:https://www.mongodb.com/try/download/
community. Install MongoDB Community Server and MongoDB Compass
from official Website for particular platform.

• Download our code from:https://github.com/Sushmitha999/Workflow.

After installing Python and MongoDB, follow the these steps:

Setting up a virtual environment (optional)

ForWindows:

• Install virtual environment:

py -m pip install --user virtualenv

• Create a virtual environment:

py -m venv env

• Activation:

.\env\Scripts\activate

ForLinux/MacOS:

• Install virtual environment:

python3 -m pip install --user virtualenv

• Create a virtual environment:

python3 -m venv env

• Activation:

source env/bin/activate

To use the software, use the following steps:

1. Run the following to install the required Python packages:

python -m pip install -r requirements.txt

2. Run the following once to insert docs into the database:

pip install add_collection.py

https://www.python.org/downloads/
https://www.mongodb.com/try/download/community
https://www.mongodb.com/try/download/community
https://github.com/Sushmitha999/Workflow

3. To start the flask server:

python views.py

4. Start the workflow engine:

python process_wf.py

5. For academics use cases, run the background service:

python acads_bg.py

63

APPENDIX B

Call Flow Graph

The flow of interaction between the python functions in routing, HTML files and JavaScript

functions is described here using 5 figures. The blue boxes represent the python func-

tions. The yellow boxes represent JavaScript functions. The red boxes represent the

HTML files and if any JavaScript function is used in a HTML file,the yellow box with

the JavaScript function resides in the corresponding HTML red box.

The figureB.1represents the hierarchy of various HTML files where the layout.html

is the main base file. The rest of the files are child files. The layout.html file contains

load_functions function which loads when the dashboard of auser is loaded. The sub

functions of load_functions are also shown.

Figure B.1: The figure depicts the HTML file inheritance with layout.html as base
HTML file.

The figureB.2 shows the routing between the basic HTML files and the python

functions. The figureB.3 shows the routing for fetching and deleting notifications.

The figureB.4 describes the routing for adding templates which includes fetching

templates, adding a selected template as a new job. It also shows the rendering of jobs

and submitting a job.

The figureB.5 shows the flow of functions between the main workflow engine and

the routing logic (conditions.py). The workflow engine (process_wf.py) uses the func-

tions for making the necessary changes to the academics messages. The functions are

present in acads_wf.py.

Figure B.2: The figure depicts routing for basic HTML files

Figure B.3: The figure depicts routing for adding templates and job rendering.

65

Figure B.4: The figure depicts routing for notifications.

Figure B.5: The figure depicts flow of workflow engine for academic use cases as an
example.

66

REFERENCES

1. M. Abadi , P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving , M. Isard , M. Kudlur , J. Levenberg, R. Monga, S. Moore, D. G. Murray ,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, andX. Zheng,
Tensorflow: A system for large-scale machine learning.In 12th{USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 16). 2016.

2. G. Alonso, C. Mohan, R. Günthör, D. Agrawal, A. El Abbadi , andM. Kamath , Ex-
otica/fmqm: A persistent message-based architecture for distributed workflow manage-
ment. In Information Systems Development for Decentralized Organizations. Springer,
1995, 1–18.

3. I. Altintas , S. Purawat, D. Crawl , A. Singh, andK. Marcus (2019). Toward a method-
ology and framework for workflow-driven team science.Computing in Science & En-
gineering, 21(4), 37–48.

4. K. Amin , S. Kapetanakis, K.-D. Althoff , A. Dengel, andM. Petridis , Dynamic pro-
cess workflow routing using deep learning.In International Conference on Innovative
Techniques and Applications of Artificial Intelligence. Springer, 2018.

5. Apache(2014). Apache airflow.https://airflow.apache.org.

6. A. Barker andJ. Van Hemert, Scientific workflow: a survey and research directions.
In International Conference on Parallel Processing and Applied Mathematics. Springer,
2007.

7. F. Betancourt, K. Wong, E. Asemota, Q. Marshall , D. Nichols, and S. Tomov,
opendiel: a parallel workflow engine and data analytics framework. In Proceedings
of the Practice and Experience in Advanced Research Computing on Rise of the Ma-
chines (learning). 2019, 1–7.

8. K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kid-
don, J. Konečnỳ, S. Mazzocchi, H. B. McMahan, V. T. Overveldt, D. Petrou, D. Ra-
mage, andJ. Roselander(2019). Towards federated learning at scale: System design.
arXiv preprint arXiv:1902.01046.

9. J. Brzeziński, A. Danilecki, J. Flotyński, A. Kobusińska, andA. Stroiński, Workflow
engine supporting restful web services.In Asian Conference on Intelligent Information
and Database Systems. Springer, 2011.

10. J. Cao, S. A. Jarvis, S. Saini, andG. R. Nudd, Gridflow: Workflow management for
grid computing.In CCGrid 2003. 3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid, 2003. Proceedings.. IEEE, 2003.

11. S. Ceri, P. Grefen, andG. Sanchez, Wide-a distributed architecture for workflow man-
agement.In Proceedings Seventh International Workshop on ResearchIssues in Data
Engineering. High Performance Database Management for Large-Scale Applications.
IEEE, 1997.

67

https://airflow.apache.org

12. W. Chen, R. F. da Silva, E. Deelman, andT. Fahringer (2015). Dynamic and fault-
tolerant clustering for scientific workflows.IEEE Transactions on Cloud Computing,
4(1), 49–62.

13. F. Chollet (2015). Keras. URLhttps://github.com/fchollet/keras.

14. R. F. da Silva, R. Filgueira, I. Pietri , M. Jiang, R. Sakellariou, andE. Deelman
(2017). A characterization of workflow management systems for extreme-scale appli-
cations.Future Generation Computer Systems, 75, 228–238.

15. R. F. da Silva, D. Garijo , S. Peckham, Y. Gil , E. Deelman, andV. Ratnakar, To-
wards model integration via abductive workflow compositionand multi-method scal-
able model execution.In 9th International Congress on Environmental Modelling and
Software. 2018.

16. E. Deelman, R. F. da Silva, K. Vahi , M. Rynge, R. Mayani, R. Tanaka, W. Whitcup ,
andM. Livny (2020). The pegasus workflow management system: Translational com-
puter science in practice.Journal of Computational Science, 101200.

17. E. Deelman, A. Mandal , M. Jiang, andR. Sakellariou (2019a). The role of machine
learning in scientific workflows.The International Journal of High Performance Com-
puting Applications, 33(6), 1128–1139.

18. E. Deelman, K. Vahi , M. Rynge, R. Mayani, R. F. da Silva, G. Papadimitriou,
andM. Livny (2019b). The evolution of the pegasus workflow management software.
Computing in Science & Engineering, 21(4), 22–36.

19. R. Filgueira, R. F. Da Silva, A. Krause, E. Deelman, andM. Atkinson , Asterism:
Pegasus and dispel4py hybrid workflows for data-intensive science.In 2016 Seventh In-
ternational Workshop on Data-Intensive Computing in the Clouds (DataCloud). IEEE,
2016.

20. Y. Gil , V. Ratnakar, J. Kim , P. Gonzalez-Calero, P. Groth, J. Moody, andE. Deel-
man (2010). Wings: Intelligent workflow-based design of computational experiments.
IEEE Intelligent Systems, 26(1), 62–72.

21. P. Grefen, K. Aberer , Y. Hoffner , and H. Ludwig (2000). Crossflow: Cross-
organizational workflow management in dynamic virtual enterprises. Computer Sys-
tems Science & Engineering, 1(ARTICLE), 277–290.

22. M. Grinberg , Flask web development: developing web applications with python. "
O’Reilly Media, Inc.", 2018.

23. C. R. Harris , K. J. Millman , S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk , M. Brett , A. Haldane, J. F. del Río, M. Wiebe, P. Peterson,
P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
andT. E. Oliphant (2020). Array programming with numpy.Nature, 585(7825), 357–
362.

24. T. Heinis, C. Pautasso, andG. Alonso, Design and evaluation of an autonomic work-
flow engine.In Second International Conference on Autonomic Computing(ICAC’05).
IEEE, 2005.

68

https://github.com/fchollet/keras

25. C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman, andJ. Good,
On the use of cloud computing for scientific workflows.In 2008 IEEE fourth interna-
tional conference on eScience. IEEE, 2008.

26. M. Islam, A. K. Huang, M. Battisha, M. Chiang, S. Srinivasan, C. Peters, A. Neu-
mann, andA. Abdelnur , Oozie: towards a scalable workflow management system for
hadoop. In Proceedings of the 1st ACM SIGMOD Workshop on Scalable Workflow
Execution Engines and Technologies. 2012.

27. B. K. JosephandO. Mosweu(). Integrating document workflow management system
in the business processes of a public institution.

28. G. Kappel, S. Rausch-Schott, andW. Retschitzegger(2000). A framework for work-
flow management systems based on objects, rules and roles.ACM Computing Surveys
(CSUR), 32(1es), 27–es.

29. D. Król , R. F. da Silva, E. Deelman, andV. E. Lynch, Workflow performance profiles:
development and analysis.In European Conference on Parallel Processing. Springer,
2016.

30. Y. LeCun andC. Cortes (2010). MNIST handwritten digit database. URLhttp://
yann.lecun.com/exdb/mnist/.

31. X. Li , J. Song, and B. Huang (2016). A scientific workflow management system
architecture and its scheduling based on cloud service platform for manufacturing big
data analytics.The International Journal of Advanced Manufacturing Technology, 84(1-
4), 119–131.

32. B. Linke, R. Giegerich, andA. Goesmann(2011). Conveyor: a workflow engine for
bioinformatic analyses.Bioinformatics, 27(7), 903–911.

33. Y. Liu , S. M. Khan, J. Wang, M. Rynge, Y. Zhang, S. Zeng, S. Chen, J. V. M.
Dos Santos, B. Valliyodan, P. P. Calyam, N. Merchant, H. T. Nguyen, D. Xu, and
T. Joshi, Pgen: large-scale genomic variations analysis workflow and browser in soykb.
In BMC bioinformatics, volume 17. BioMed Central, 2016.

34. B. Ludäscher, I. Altintas , C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee,
J. Tao, andY. Zhao (2006). Scientific workflow management and the kepler system.
Concurrency and computation: Practice and experience, 18(10), 1039–1065.

35. A. Mandal , P. Ruth, I. Baldin , R. F. Da Silva, andE. Deelman, Toward prioritization
of data flows for scientific workflows using virtual software defined exchanges.In 2017
IEEE 13th International Conference on e-Science (e-Science). IEEE, 2017.

36. A. Mandal , P. Ruth, I. Baldin , Y. Xin , C. Castillo, G. Juve, M. Rynge, E. Deelman,
andJ. Chase, Adapting scientific workflows on networked clouds using proactive in-
trospection. In 2015 IEEE/ACM 8th International Conference on Utility and Cloud
Computing (UCC). IEEE, 2015.

37. P. Missier, K. Belhajjame, J. Zhao, M. Roos, andC. Goble, Data lineage model for
taverna workflows with lightweight annotation requirements. In International Prove-
nance and Annotation Workshop. Springer, 2008.

69

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

38. A. Mujezinovi ć andV. Ljubovi ć, Serverless architecture for workflow scheduling with
unconstrained execution environment.In 2019 42nd International Convention on In-
formation and Communication Technology, Electronics and Microelectronics (MIPRO).
IEEE, 2019.

39. H. Nawaz, G. Juve, R. F. Da Silva, andE. Deelman, Performance analysis of an i/o-
intensive workflow executing on google cloud and amazon web services.In 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, 2016.

40. P. Neophytou, P. K. Chrysanthis, andA. Labrinidis , Confluence: Continuous work-
flow execution engine.In Proceedings of the 2011 ACM SIGMOD International Con-
ference on Management of data. 2011.

41. M. Pap, L. Z. Nagy, andD. Fekete(2020). Improving e-learning material quality with
the aid of deep learning and workflow management.

42. F. Pedregosa, G. Varoquaux, A. Gramfort , V. Michel , B. Thirion , O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher , M. Perrot , andE. Duchesnay(2011). Scikit-learn:
Machine learning in python.Journal of machine learning research, 12(Oct), 2825–
2830.

43. A. Pradhan andR. K. Joshi, Architecture of a light-weight non-threaded event ori-
ented workflow engine.In Proceedings of the 8th ACM International Conference on
Distributed Event-Based Systems. 2014.

44. X. Qiu, C. Lan, B. You, andJ. Li , Information fusion in the applications of work-
flow management system.In 2019 IEEE 14th International Conference on Intelligent
Systems and Knowledge Engineering (ISKE). IEEE, 2019.

45. S. Rinderle, M. Reichert, andP. Dadam, Adept workflow management system: Flexi-
ble support for enterprise-wide business processes (tool presentation).In International
Conference on Business Process Management, volume 2678. 2003.

46. A. Robins (1995). Catastrophic forgetting, rehearsal and pseudorehearsal.Connection
Science, 7(2), 123–146.

47. M. Rynge, S. Callaghan, E. Deelman, G. Juve, G. Mehta, K. Vahi , andP. J. Maech-
ling, Enabling large-scale scientific workflows on petascale resources using mpi mas-
ter/worker. In Proceedings of the 1st Conference of the Extreme Science and Engi-
neering Discovery Environment: Bridging from the eXtreme to the campus and beyond.
2012.

48. D. D. Sánchez-Gallegos, D. Di Luccio, J. L. Gonzalez-Compean, andR. Montella,
Internet of things orchestration using dagon* workflow engine. In 2019 IEEE 5th World
Forum on Internet of Things (WF-IoT). IEEE, 2019.

49. H. Shin, J. K. Lee, J. Kim , andJ. Kim (2017). Continual learning with deep generative
replay.arXiv preprint arXiv:1705.08690.

50. C. Simpkin, I. Taylor , G. Bent, G. de Mel, andR. Ganti (2018). A scalable vector
symbolic architecture approach for decentralized workflows.

70

51. B. S. H. Suri andK. Yeturu (2020). Pseudo rehearsal using non photo-realistic images.
arXiv preprint arXiv:2004.13414.

52. R. Tomsett, G. Bent, C. Simpkin, I. Taylor , D. Harbourne, A. Preece, andR. Ganti,
Demonstration of dynamic distributed orchestration of node-red iot workflows using a
vector symbolic architecture.In 2019 IEEE International Conference on Smart Com-
puting (SMARTCOMP). IEEE, 2019.

53. B. Tovar, R. F. da Silva, G. Juve, E. Deelman, W. Allcock, D. Thain, andM. Livny
(2017). A job sizing strategy for high-throughput scientific workflows. IEEE Transac-
tions on Parallel and Distributed Systems, 29(2), 240–253.

54. K. Wolstencroft, R. Haines, D. Fellows, A. Williams , D. Withers, S. Owen,
S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, J. Bhagat, K. Belhajjame,
F. Bacall, A. Hardisty , A. Nieva de la Hidalga, M. P. Balcazar Vargas, S. Sufi,
andC. Goble (2013). The taverna workflow suite: designing and executingworkflows
of web services on the desktop, web or in the cloud.Nucleic acids research, 41(W1),
W557–W561.

55. H. Xiao, K. Rasul, andR. Vollgraf (2017). Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms.arXiv preprint arXiv:1708.07747.

56. P.-C. Yang, S. Purawat, P. U. Ieong, M.-T. Jeng, K. R. DeMarco, I. Vorobyov, A. D.
McCulloch, I. Altintas , R. E. Amaro, andC. E. Clancy (2019). A demonstration of
modularity, reuse, reproducibility, portability and scalability for modeling and simula-
tion of cardiac electrophysiology using kepler workflows.PLoS computational biology,
15(3), e1006856.

57. Y. Yang, L. Zhang, andQ. Zhang, Constructing business simulation training platform
based on workflow management systems.In 2018 14th International Conference on
Computational Intelligence and Security (CIS). IEEE, 2018.

71

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	ABBREVIATIONS
	INTRODUCTION
	Motivations
	State of the Art
	Gap Area
	Our contributions
	Organization of the thesis

	Background
	Microservices
	JSON
	Python-Flask
	WSGI
	Jinja2

	Bcrypt
	MongoDB
	Pymongo

	Proposed Workflow Engine
	Formal representation and reasoning
	Schematic of the system
	Features
	Domain Agnosticism
	Content-based Routing and Dynamic routing
	Flow Mutation
	Node Reuse
	Rendering as a Service
	Distributed Nature of Workflow System
	User-Interface Node
	Computational Node
	Web-API
	Light Weight
	IoT Enabled
	Communication Security
	Anonymity of Nodes

	Proof of concept using Python and Flask

	Results - Course Registration/AddDrop Forms
	About this Chapter
	Course Registration
	Add/Drop Course

	Results - HTTA/HTRA Forms
	HTTA/HTRA forms
	General

	Results - Data Generator based Continual Learning Systems for Edge Devices
	About this Chapter
	Remote Data Generation (RDG) architecture
	Prediction-Service
	Training-Service
	Data-Service

	Genetic Algorithm (GA) as a data generator
	General Adversarial Networks (GAN) as a data generator
	Guassian Mixture Models (GMM) as Data Generator
	Original Data as a service
	Implementation Details

	Conclusions and Future Directions
	 Contributions
	Installation
	Call Flow Graph

