A Novel Workflow Architecture based on Flow Mutation

and Rendering As A Service

submitted in partial fulfillment of the requirements

for the degree of

BACHELOR OF TECHNOLOGY
in
COMPUTER SCIENCE AND ENGINEERING
by

KS KOUSHIK CS1/B013
BRIJESH VORA CS17B031
GUDISEVA BALA SUSHMITHA CS17B033

Supervisor(s)

Dr. Y. Kalidas

YR UTenRTe! Fwrme frouf
1
'o

T [B A
i ol o [
TIRUPATI

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI

MAY 2021

DECLARATION

We declare that this written submission represents our ideas in our own words and
where others’ ideas or words have been included, we have adequately cited and refer-
enced the original sources. we also declare that we have adhered to all principles of
academic honesty and integrity and have not misrepresented or fabricated or falsified
any idea/data/fact/source in my submission to the best of my knowledge. we understand
that any violation of the above will be cause for disciplinary action by the Institute and
can also evoke penal action from the sources which have thus not been properly cited

or from whom proper permission has not been taken when needed.

Place: Tirupati Signature

Date: 06-06-2021 KS Koushik
CS17B013

PurZers

Place: Tirupati

Date: 06-06-2021 Brijesh Vora
CS17B031
Place: Tirupati Q Signature
Date: 06-06-2021 Gudiseva Bala Sushmitha

CS17B033

BONA FIDE CERTIFICATE

This is to certify that the report titledh Novel Workflow Architecture based
on Flow Mutation and Rendering As A Service submitted byKS Koushik, Bri-
jesh Vora and Gudiseva Sushmithato the Indian Institute of Technology, Tirupati,
for the award of the degree &achelor of Technology is a bona fide record of the
project work done by them under our supervision. The contents of this report, in full or
in parts, have not been submitted to any other Institute or University for the award of

any degree or diploma.

Place: Tirupati Dr. Y. Kalidas

Date: 06-06-2021 Guide
Assistant Professor
Department of Computer
Science and Engineering
IIT Tirupati - 517619

ACKNOWLEDGMENTS

We want to thank our supervisor, Dr Y. Kalidas, for his inaie supervision, expertise
and support, who has guided us throughout our B.Tech Prajéeextend our thanks to
all the other faculty members in the Computer Science deymant and the members of
Academics office who gave suggestions and critiques to imgooir workflow system.
Finally, we thank the M. Tech alumni Animesh Nanda, Vamsiskna and Kirtiman

Mishra and MS Scholar Prashanth K, who provided us with tloes&ary starter code

to continue their project.

ABSTRACT

KEYWORDS: Workflow ; Microservices; Flow Mutation; Rendegi as a service.

Workflow systems is still an open area of research due to sivdomain scenar-
i0S, response time, processing power, storage restrg;tdmmain specific scenario and
security aspects. In this regard, 14 key features have lgesrified of any workflow
system as domain agnosticism, content based and dynantiicgomessage mutations,
definition of nodes, workflows, their reuse and distributibexibility in rendering, user
interface and computational processes, web adaptalabippatibility with low end
devices and internet of things, security and ability to mibbhnd discover functional
capabilities. Formalism based reasoning to discover adnnashtal issue in the state of
the art for lack of customizability, as the orchestratiagidovhich is a simple map from
source to target nodes and forces nodes to couple with gplaigyic has been done. This
issue is solved through a novel conceptloiv mutationto expand the scope of routing
logic to modify a message there by making a node more thindditian, for user inter-
face nodes,a fast upcoming conceptearidering as a servicéor interface generation
has been used. For computational nodes, a novel schemeaafsgrtriad for data sci-
ence workflows for model, data and control as services isdiuited. The formalism
can be realized in any implementation however a proof of ephcs provided using
Python/Flask for use cases for smart campus, computemvasid machine learning
processes. In a nutshell, this report contains a novel wawkéirchitecture backed by
formalism for building of highly flexible, scalable, domaagnostic and light weight

systems to provide plug-n-play nodes, workflows and rendeand security.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS
ABSTRACT

LIST OF FIGURES

LIST OF TABLES
ABBREVIATIONS

1 INTRODUCTION
1.1 Motivations.
1.2 StateoftheArt.
1.3 GapArea. e
1.4 Ourcontributions.

1.5 Organizationofthethesis.

2 Background
2.1 MICrOServiCesS. o v it e
2.2 JSON . . .
23 Python-Flask.
231 WSGI.

24 Berypt.
25 MongoDB. e

3 Proposed Workflow Engine
3.1 Formalrepresentationandreasoning.
3.2 Schematicofthesystem

3.3 Features.

Xi

A M w N R

© 00 00 N o O

10
10

12
12
14
16

3.4 Proof of concept using Python and Flask

Results - Course Registration/AddDrop Forms

4.1
4.2

4.3 Add/DropCourse. e e e

3.3.1 Domain Agnosticism

3.3.2 Content-based Routing and Dynamic routing

3.3.3 Flow Mutation

3.3.4 Node Reuse

3.3.5 Rendering as a Service

3.3.6 Distributed Nature of Workflow System.

3.3.7 User-Interface Node
3.3.8 Computational Node
3.3.9 Web-API

3.3.10 Light Weight
3.3.11 1oT Enabled

3.3.12 Communication Security.

3.3.13 Anonymity of Nodes

AboutthisChapter.,

Course Registration

Results - HTTA/HTRA Forms

5.1
5.2

Results - Data Generator based Continual Learning Systemfor Edge

HTTA/HTRAforms. e et .

General

Devices

6.1
6.2

6.3
6.4
6.5

AboutthisChapter.
Remote Data Generation (RDG) architecture
6.2.1 Prediction-Service

6.2.2 Training-Service

6.2.3 Data-Service

Genetic Algorithm (GA) as a data generator

General Adversarial Networks (GAN) as a data generator . . .

Guassian Mixture Models (GMM) as Data Generator

17
17
17
18
18
19
19
19
19
19
20
20
20
21

23
23
23
26

38
38
41

50
50
50
50
51
51
51
54
55

6.6 OriginalDataasaservice.

6.7 ImplementationDetails

Conclusions and Future Directions

Contributions

Installation

Call Flow Graph

59

61

62

64

3.1

3.2

3.3

3.4

3.5

3.6

LIST OF FIGURES

Schematic diagram of workflow system is depicted in tQisr®. Green
rectangles indicate key functional nodes for Ul, Renderi@gmpu-
tations, Workflow and Routing logic. There are 4 databasé éaic
node, workflow, routing logic and domain specific key-valo®ima-
tion. Routing logic can be dynamically provided. The blud anange
small circles correspond to messages before and after mwatibf re-
spectively by the workflow module..

Schematic depiction of a user interface type node. Tle poocesses

any message characterized by user, role and job fields. Tdréaice has
interaction elements of diverse types including: file udloé diverse
types, radio button, check boxes, text boxes and submibutThe
execute button performs message modification and submissithe
workflow. There are convenience features to do-undo and.rese

This is a depiction of sequence of steps in a typical ugeraction
node. The green rectangles indicate action modules anduthéered
circles denote the sequence of steps. The orange rectandleate
background modules and their relationship to the foregidaterface.
The detailed steps are covered in the manuscripttext..

A depiction of thedlow mutation concept. The present workflow sys-
tems consider a router apastmartype there by leading to higher node

complexity. The figure depicts a complex node coupling withting

logic and rendering. The figure depicts the effect of decogm node
with routing logic and making it @oordinatortype and allowing flow
mutation. A user interface node is processed by the condepnhder-
ing as a servicavhere interface itself is dynamically generated. .

A highly distributed workflow system is depicted here) Denotes the
workflow system instance which as nodes of two types comiputat
and interaction type, local workflows and a transfer workfldtvhas
databases for nodes and workflows. (B) Denotes one companarch
multiple workflow system instanced deployed and runningusiame-
ously. (C) Denotes a scenario of multiple computers, eathaimulti-
tude of workflow system instances and inter communicatiagransfer
workflows and recievernodes.

This figure depicts modules in the proof of concept sydiait using
python and flask libraries. The user interaction componargshown
in green colour. The HTML box corresponds to user visuabreand
interaction with graphical elements. Databases for nodekflow and
templates are shown as cylinders. Arrows indicate flow oh dathext
steps. The annotations on top of arrows denote specificaesdips.

Vi

15

16

18

21

22

3.7 Thisfigure depicts the process_wf.py module built upytbon. Databases
for node and workflow are shown as cylinders 22

4.1 The figure depicts flow of steps in the scenario for couegestration

inan academics scenario..o 24
4.2 The figure depicts the login page with academics crealenti . . . 24
4.3 The figure depicts the dashboard of academics.. 25
4.4 The figure depicts the templates available for academics. . . . 25

4.5 The figure depicts the rendered job for academics. Acaddmas en-
tered the job name and uploaded the empty Course Registfatio. 25

4.6 The figure depicts the rendered course registrationrjdhe Student
Dashboard. L 26

4.7 The figure depicts the empty course registration fornmtsgacademics
tothestudent.. 27

4.8 The figure depicts the rendered course registrationrjadhe Faculty
Adivsor Dashboard, containing the form filled by student.. . . . 28

4.9 The figure depicts the rendered course registratiomjtiel Academics
Dashboard, containing the form filled by student and ackadgéd(signed)

by Faculty Advisor.. 28
4.10 The figure depicts the directory where all the signedsmregistration

form is downloaded automatically. 28
4.11 The figure depicts flow of steps in the scenario for coadskand drop

inan academics scenario..o e e 29
4.12 Figure showing adding a new job for add/drop course laep . . 29
4.13 Figure showing academics entering the job name ancdipip PDF

form just before sendingtostudents. 29
4.14 Figure showing a message after submit and job is predess. . . 29
4.15 Figure showing student’sdashboard. 30
4.16 Figure showing empty add-drop course PDF form. 30
4.17 Figure showing student’s dashboard with job just e&ending to

COUrsSe iNStructor e 31
4.18 Figure showing course instructor's dashboard 31

4.19 Figure showing PDF form sent by the student to the cdosseictor 32
4.20 Figure showing course instructor’s dashboard befamdiag to student 32

4.21 Figure depicting student dashboard with job receivedhfthe first
COUrse iNStructor e 33

4.22 Figure showing PDF from filled by one course instructor 33

vii

4.23

4.24

4.25
4.26
4.27
4.28
4.29

5.1

5.2
5.3

5.4
5.5

5.6

5.7
5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

Figure showing the student dashboard with job receired course
INStructor e e

Figure depicting student dashboard with sending tolfg@advisor ra-
dio buttonchangedto'YES'.

Figure showing faculty advisor's dashboard
Figure showing PDF form filled by two course instructors. . . .
Figure showing jobs received from students by academic. . . .
Figure showing completely filled add/drop form

Figure showing Student Notifications

The figure depicts flow of steps in the scenario for HTRArfan an
academics sCenario.. i e e

The figure depicts the templates available for academics. . . .

The figure depicts the rendered job for academics. Acaddmas en-
tered the job name and uploaded the empty HTRA form..

The figure depicts the rendered HTRA job in the StudenhDaard.
The figure depicts the empty HTRA form sent by academitisestu-

The figure depicts the rendered HTRA job sent by studetite¢drA
supervisor. The supervisor can click on the PDF file to viesvftrm.

The figure depicts the notifications of the student.

The figure depicts the rendered HTRA job sent by TA Supentd the
guide. The guide can click on the PDF file to view the form.. . .

The figure depicts the job containing the completly filEERA Form.
Figure showing dashboardmofand adding a general template. .
Figure showing entering job name and role name in geteenglate
Figure depicting different fields of data that can beegdd
Figure depicting adding textfield.
Figure depicting adding drop down field.
Figure showing job after adding text and drop down fields . . .
Figure depicting adding checkbox field
Figure depicting adding radio buttonfield.
Figure depicting adding file upload field.
Figure showing job after adding all the possible fields.

Figure showing job after filling in the data in all the digladded . .

viii

34
35
35
36
37
37

38
39

39
39

40

41
41

42
42
42
43
43
44
45
45
46
a7
48
48
49

5.21 Figure showingzdashboard and the job received from

6.1 Figure shows the interaction between controller anddtitabase via
workflow system when generating synthetic data using Gemdgjo-

6.2 Figure shows the shows the retraining process of themyafter syn-
thetic data has beengenerated.

6.3 the block diagram shows the interactions between vagervices when
either GMM or GAN are used as Data services.

6.4 the figure shows the concept of pseudo rehearsal. theetimtlata of
previous batch, generated using GAN or GMM are interleavitid tive
newly arrived trainingdata.

6.5 Figure shows the interactions between the Controlldrthe database
containing the originaldata..

B.1 The figure depicts the HTML file inheritance with layouiihas base
HTMLfile. e

B.2 The figure depicts routing for basic HTML files.

B.3 The figure depicts routing for adding templates and joldeging. .

B.4 The figure depicts routing for notifications.

B.5 The figure depicts flow of workflow engine for academic uases as
anexample..

52

52

54

55

65

65

66

66

LIST OF TABLES

1.1 14 important features (section 3.3) in any workflow syst&ve been
identified that are critical to its wide spread use, scalgiahd flexibilty
which are depicted in the tabulationhere.. 4

1.2 A comparison of state of the art algorithms with respedhe 14 as-
pects of any workflow system. Here 0 means, the feature is dhot a
dressed and 1 means it is addressed by the correspondingdneth 5

AWS
DAG
GA
GAN
GMM
GUI
PoC
REST
Ul

ABBREVIATIONS

Amazon Web Services

Directed Acyclic Graph

Genetic Algorithm

General Adversarial Networks
Gaussian Mixture Models
Graphical User Interface

Proof of Concept
Representational State Transfer

User Interface

Xi

CHAPTER 1

INTRODUCTION

Workflow management is a very standard requirement in angnizgtion involving
administration, business or scientific processes. A workiotheoretically equivalent
to a program involving shared functions across diversernarag. A workflow involves
several steps, where each step itself may be a complex lssginecess. These steps or
individual processes are shared among several dozens kfloves and their instances.
The flow of a message or a snapshot of several related messageg these processes

constitutes a workflow.

The application domain itself may be varied with differesquirements and service
level agreements. The processes range from slow and timsugong steps to real
time processes, less data to several tera-bytes of stagggaements, novice to scien-
tific processes and human-in-loop systems across diversaidon e-commerce, busi-
ness to business, defense, bioinformatics, administratial several other organization
where processes are involved. There have been severalslokzemrkflows systems

worldwide over more than last two decades and still newdesys are evolving.

1.1 Motivations

There is a need to understand what is common across all thetesrss, what is missing
in common amongst the state of the art, why is it that severstbss are still evolv-
ing and is there a way to define and address in a formal andeatiesrsetting and

demonstrate by a proof of concept of the ideas developedeTdre hundreds of work-
flow systems worldwide. The main domains are business, astration and scientific.
There is a need to address why there are so many systems aedeisitway to address
at the fundamental level. There is also a need to addresatkedf customization in

the orchestration.

1.2 State of the Art

Various state of the art workflow systems have been exploneldstudied. Most of
the literature talked about features like security, sahtgland distributed node objects.
Many papers discuss domain specific scenarios like documanagement systems
Joseph and Moswelife sciences (agriculturkiu et al. (2016 and healthvyang et al.
(2019), scientific workflows (Chenet al. (2015, Ryngeet al. (2012, Mandalet al.
(2015, Tovaret al. (2017, Ludascheret al. (2006, Mandalet al. (2017 and so on),
sensors in defense scenari@sl et al. (2019 and education technologydng et al.
(2018, Papet al. (2020).

Some state of the art systems talks about job schedulingeXaonple Mujezinovic
and Ljubovt (2019 schedules workflow in a serverless architecture usingumed
consumer architectural patterns and AWS lambda functiGaset al. (2003 discusses
workflow for grid computing and the Fuzzy Time technique farridflow scheduling
and conflict management.i et al. (2016 talks scheduling in big data analytics and
reuses node objects. Another feature that some systemssdiscthe allocation of re-
sources for better performancghenet al. (2015 talks about dynamic task clustering
strategies to merge several short tasks into a single jolcaimabrove the runtime per-
formance of workflow executions in faulty execution envirenmts.Tovaret al. (2017)
termed this as the job sizing problem and recommends a mséeedback loop that
uses historical information to compute a recommended fistation for the job sizing
problem. FurtherkKrdl et al. (2016 talks about workflow performance profiles, which
analyzes workflow profiles based on time series data cotldcten real workflow ex-
ecutions. Nawazet al. (2016, Deelmanet al. (201%), da Silvaet al. (2017, Ceri
et al. (1997 andAmin et al. (2018 discuss high performance computer simulations in
large-scale applicationdNawazet al. (2016, Sanchez-Gallegost al. (2019 include
support for 10T and IAAS. Cloud execution specific scenasisdiscussed iNandal
et al. (2015, Nawazet al. (2016, Filgueiraet al. (2016, Li et al. (2016 andHoffa

et al. (2008 which include 1/0 and data-intensive workflows.

When it comes to representing a workflow, many state-ofattiaystems use DAG
as the primary mediunRyngeet al. (2012, Yanget al. (2018, Deelmaret al. (2020,

Mandalet al. (2017 andLinke et al. (201]) talks using loosely-coupled workflows as

independent DAGs with each node as task and edge as depasdédefinite interfaces
for workflows are discussed in some of the literatureet al. (2016 uses textual and
GUI interface for entering the requirements. Some workflggtesms use user nodes,
computational nodes or bothoseph and MosweaandLudascheet al. (2006 have only
user nodes and no computational nodélensoet al. (1995 uses only computational
nodes.Liu et al. (2016 uses both.Ryngeet al. (2012 andBetancourtet al. (2019
have an interface for passing messages between the Adbsso et al. (1995 uses a

persistent message passing system instead of a centrdéizaubse.

Exploring the key features in the literatuf@yngeet al. (2012 uses content-based
routing, but the node decides what to do upon receiving a agesand not the routing
logic. Liu et al. (2016, Wolstencroftet al. (2013 andda Silvaet al. (2017 discusses
using nodes as microservice3tzezhski et al. (2011 andLiu et al. (2016 use work-

flows where nodes are communicating via REST.

1.3 Gap Area

After analysing the various state of the art systems,thencomconcepts amongst all
the workflow systems have been identified. Further featuresalso proposed. All
the features are discussed in detail in the sec®i@and described in table. 1. Many
of them not address at the fundamental level the need for mmependence from
the knowledge of many a workflow in which it participates velstill retaining ability
to take part in decision branches. The literature mainly$es on distributed node
objects, execution, inter-node communication mechanisvoskflow abstraction as a
graph and user interfaces. The existing methods are coohpai contrasted against

these features and critical gap areas are summarized (Taple

Flow mutationis not implemented in any of the examined systems. The cémdep
rendering as a servicehich use introduced in our system, is a recent phenomenon in
the state of the art and only seen in about 6 systems out ofst@rag studied including

our proposed system.

Feature numbey Feature name Abbreviation
1 Domain Agnosticism DA
2 Content based Routing CR
3 Dynamic Routing DR
4 Flow Mutation FM
5 Node Reuse NR
6 Rendering as a Service RS
7 Distributed/Scalable Systems DS
8 User interface Node UN
9 Computational Node CN
10 Web API WA
11 Light Weight LW
12 Internet of things Enabled IE
13 Communication Security CS
14 Node Publication NP

Table 1.1: 14 important features (secti®®) in any workflow system have been iden-
tified that are critical to its wide spread use, scalabilitg #lexibilty which
are depicted in the tabulation here.

1.4 Our contributions

A novel concept oflow mutationcombined with the concept oéndering as a service
to result a formalism enabling design of highly flexible, labde and domain agnostic
workflow systems have been proposed. The formalism is geaed any contemporary
technology can be chosen to implement. A proof of concepte@mpntation of the
workflow architecture in Python environment and Flask liteshave been presented.
The PoC is evaluated on a set of 5 scenarios for a smart cangeusase, a mimic
smart city use case, machine learning and computer visiercases and loT device

connectivity use cases.

1.5 Organization of the thesis

Chapterl contains introduction to the workflow systems, why it is reg@nd moti-

vation for building such systems. Also, it contains stateéhef art, gap areas and our
contribution and literature review. Chapt2includes the background information of
the technologies used - Flask, MongoDB, Python. Chaptemtains the core architec-
ture, Mathematical formulation and salient features ofwarkflow systems. Chapter

4 contains Use cases pertaining to our workflow system - Cdresggstration and Add

4

S.No Reference 112/3/4|5|6|7|8|9]10|11|12|13| 14| Feature
coverage
1. Alonsoet al. (1995 i/{o0f1/0(0f0|2|0|2|0O|2|0|1 1 50%
2. Cerietal. (1997 o|jo|jo|0|0O0|0O|1|0jO0O|2 2|01 0 29%
3. Grefenet al. (2000 0{0|1|0]|0 11000201 1 43%
4, Kappelet al. (2000 i|oj1/0|0|0O|jO|OfO|jO|1]|]0Of1]|O 29%
5. Rinderleet al. (2003 ojoj1/0]|o0 1j0{0j0|1|0|1]|1 43%
6. Caoet al. (2003 o|o|o|o]|o 1{1|olo| 1|01 1] 43%
7. Heiniset al. (2005 o(f1/0|0(0f|0O|2|0f0OjO0O|2]|]0]|1]|1 36%
8. Ludascheet al. (2009 0|0|0|0]|12 1j1{2,0j1|0}|1)|1 57%
9. Barker and Van Heme(2007) |[0|0|/O0|(0|0|/0O|O|1|2/0|0|0|2 |0 21%
10. Missieret al. (2008 0j0,0|0|0j0Of2(0Of2j0|2 1|20 36%
11. Hoffa et al. (2008 ojojo|o0|0|0O|1|0f1|0|O0O|O|1 1 29%
12. Gil et al.(2010 i/(ojoj0j0j0O|2|0|2|0O|0O|0O|1]|O0 29%
13. Neophytotet al. (201 0/0|0|0]|0O ifofof1]0[0 |11 3%
14. Linke et al. (2011 o|jojojojojoj1fo0|j0j1|0f0O|O0|O 14%
15. Brzeziskiet al. (2011 1/0/{0/0|1|0f41|0|j0j212|0|J0|12]|0O0 36%
16. Ryngeet al. (2012 ojojofo|oj0oj1|0f1j0|0f0|1/0 21%
17. Islamet al. (2012 ojo0|j0j0f0O|2|0f1) 00|01 0 21%
18. Wolstencroftet al. (2013 ojojojo|1j0|2|0f1j{140]0|0]12 36%
19. Pradhan and Jos(014 ojojofo|ojoj1|j0f0jO0O| 10|10 21%
20. Mandalet al. (2015 0(0/1/,0|0/042(0Of2j0|0j0]|O0O0]O 21%
21. Chenet al. (2015 o|jojojojojoj1f0o|1|{0|0Of0O|O0O|O 14%
22. Filgueiraet al. (2016 ojojofo|oj0oj1|0f1j0|0fl0]|0O0|O 14%
23. Nawazet al. (2016 o|jo|o0|0|0|0O|1|0j1|0|0O|1|1 0 29%
24. Liu et al. (2016 ojojo0j0j0f0j2|0f1j2 | 0]0]|1]|1 36%
25. Li etal.(2019 i/(ojoj0j0j0|2|0|2|2|0|0|0O]|O 29%
26. Krol et al. (2016 i(oj0oj0|j0j0O|2|0|O0O|O|O|0O|21]|O 21%
27. da Silvaet al. (2017 00/0/0|0/0Of21f2f(2j0|0j0]|O0]1 29%
28. Tovaret al. (2017 i/(ojoj0l0j0O|2|0|O0O|O|2|0|0O]O 21%
29. Mandalet al. (2017 i(of1/0/0/0|0|0|O0O|O|O|0O|O]|O 14%
30. Simpkinet al. (2018 0(0/0/0|0/0Of1f2f(2j0| 0|01 1 36%
31. da Silvaet al. (2018 o|jojojojojoj1foj0j0|jOfO|1|0O 14%
32. Yanget al. (2019 o|jo|0|0|1|0|1|0|0|O|O|O|O|O 14%
33. Tomsettet al. (2019 o(oj1|0(0f0f|2|2f1y 00|12 |1]|1 50%
34. Deelmaret al. (201%) ojo0|j0j0f(0O|2|0l0OJ O 0|01 |0 14%
35. Sanchez-Gallegost al.(2019 |0|O0|O0O|0O|O|O|1|0lO|O|O0O|O|1 0 14%
36. Deelmaret al. (201%) o|jo|0|0|0|0O|1|0j0OjO|O|O|1|0 14%
37. | Mujezinovic and Ljubove (2019 0| 0| 0| 0|0O|O|O|O|0[0| 0|0 1|0 7%
38. Altintaset al. (2019 ojojo|o0|0|0O|O|Of1|1 0|01 1 29%
39. Deelmaret al. (2020 o|jo|o0|0|0|0O|1|0|0O|O|O|O|O|O 7%
40. Joseph and Mosweu ojojo|j0j0f0|1|0f0OJO0O|2|0]|0O]|O 14%
41. Apache(2019 i|/oj1/0|0|O|2|1|0O|jOjO]|Of1]O 36%
42. Proposed Workflow 1111 1 1j1j2/11|1)1)|1 100%

Table 1.2: A comparison of state of the art algorithms witbpext to the 14 aspects
of any workflow system. Here O means, the feature is not adeldeand 1
means it is addressed by the corresponding method.

Drop scenario. Chaptér contains use cases of workflow systems HTTA/HTRA and
general. Chapte® contains use cases of the data generator in a continuairigasce-
nario. Chaptef is the final chapter with conclusion and future directiontiafter8

contains the people who contributed to this project and nitagleccessfull.

CHAPTER 2

Background

Technologies used are python-flask, MongoDB, pymongo,dirdyata is represented

as JSON objects. Our architecture is based on Microsetvices

2.1 Microservices

A microservice is an independent part of a usually largeiegpbn, communicating
with others over HTTP via the published API. They are indejeerly deployable and
maintainable. They communicate via the REST API they exposst often in JISON,

which is light-weight to process and transfer.

Benefits of Microservices are:

Continuous Integration and Continuous Deployment (D)/.C
Containerization

Programming Language and Framework Independent
High Scalability

High Availability

High Resilience

ok wWNE

2.2 JSON

JSON stands for JavaScript Object Notation. It is a lighghedata interchange format.

JSON Syntax Rules:

1. Datais in name/value pairs.

2. Data is separated by commas.
3. Curly braces hold objects.

4. Square brackets hold arrays.

JSON Example:

“roll no":"B123",

"student _nane": " Abc",

"year":"2017",

"programme":"B.tech",

"specialization":"Conputer Science and Engi neering",

"facul ty_advi sor": "advi sor 1"

2.3 Python-Flask

Flask is a web application framework written in Python. Aleadtion of libraries and
modules that enables a web application developer to wripdcgtions without having
to bother about low-level details such as protocols andathmeanagement is called
Web Application Framework. Flask is based on the WerkzeugW8olkit and Jinja2

template engine.

Example code of python flask is shown below.

fromflask inport Flask
fromflask cors inport CORS

app = Flask(__nane_)

app. secret _key = "workfl owsyst ent
CORS(app)

@pp. rout e(’ /dashboard’, nethods = [GET', 'POST'])
def dashboard():
return "Hello World!'"

if name ="' _ main__:

app. run(port="5000", debug=Tr ue)

2.3.1 WSGI

Web Server Gateway Interface (WSGI) has been adopted asdastizfor Python web
application development. Werkzeug is a WSGI toolkit, whistplements requests,
response objects, and other utility functions. This ersbielding a web framework on

top of it. The Flask framework uses Werkzeug as one of itshase

Example code of flask request is shown below.

fromflask inmport Flask, request
fromflask cors inmport CORS

app = Flask(__nane_)

app. secret _key = "workfl owsyst ent

CORS(app)

@pp. route(’ /dashboard’, nethods = [' GET', ' POST'])
def dashboard():
i f request.nethod ==’ POST :
f = request.formaget(’id)
return render _tenpl ate(’ dashboard. htm ")

if name ==’ _ min__

app. run(port="5000", debug=Tr ue)

2.3.2 Jinja2

Jinja2 is a popular templating engine for Python. A web textipy system combines a
template with a certain data source to render dynamic webegdgprovides a Django-
inspired non-XML syntax but supports inline expressiond an optional sandboxed

environment.

Example code of Jinja rendering template is shown below.

fromflask inmport Flask, render_tenplate

8

app = Flask(__nane_)

@pp.route(’ /)
def index():
return render _tenplate(’index.htm’)

if name ="' _ min__

app. run(port="5000", debug=Tr ue)

2.4 Bcrypt

The bcrypt is a password hashing function designed by Niedgd® and David Maz-
ieres, based on the Blowfish cipher. The bcrypt function ésdfault password hash
algorithm for OpenBSD. There are implementations of bcigptC, C++, C#, Java,
JavaScript, PHP, Python and other languages.

Example code of creating a hashed password is shown below.

i mport bcrypt

passwd = b’ s$cret 12’

salt = bcrypt.gensalt()

hashed = bcrypt. hashpw passwd, salt)
print(salt)

print (hashed)

Example code of password matching is shown below.

i mport bcrypt

passwd = b’ s$cret 12’

salt = bcrypt.gensalt()

hashed = bcrypt. hashpw passwd, salt)

i f bcrypt.checkpw(passwd, hashed):
print("mtch")

el se:

print("does not match")

2.5 MongoDB

MongoDB is an open-source document database and leadin@INd&tabase. Mon-
goDB is written in C++. MongoDB uses JSON-like documentswaptional schema.

MongoDB works on concept of collection and document.

Database Database is a physical container for collections. Eachldete gets its
own set of files on the file system. A single MongoDB serverdgfly has multiple

databases.

Collection: Collection is a group of MongoDB documents. It is a similaRela-

tional Database Management System (RDBMS).

Document A document is a set of key-value pairs. Documents have dimam

schema.

2.5.1 Pymongo

Python needs a MongoDB driver to access the MongoDB databdsst MongoDB
driver is pymongo. PyMongo is a Python distribution conitagrtools for working with
MongoDB, and is the recommended way to work with MongoDB fieython.

from pynongo i nport MngoC i ent

#Creating a pynongo client

client = Mongodient(’local host’, 27017)
records = client["kali_db’][" users’]

#check if userl D exists in database

user! D found = records.find one({"userlD': "xyz"})

To insert data in database

records.insert_one({"userlD': "abc"})

10

#To del ete data i n dat abase

records. del ete_one({"userID': "pqr"})
To update one record in databse

records. update_one({’ userl D :userl D}

{"$set":{’ password’ : new_password}})

11

CHAPTER 3

Proposed Workflow Engine

A formal representation of the system and interpretatiqmravided for deeper under-

standing of any workflow system and our specific modificatidrtse representation is

agnostic of technology and any state of the art mechanisrgdbmased to deploy. For

the proof of concept and initial working model, the formalign Python using Flask

micro-services framework have been implemented.

3.1 Formal representation and reasoning

Here a formal representation of the system is presentedtamapability in terms of

flexibility and scalability.

H

12.
13.
14.
15.
16.

17.
18.
19.

CLXNoOUOR~WNE

LetM denote set of all message¥,®

HereV is domain specific vocabular is data andM is in key-value format
LetN denote set of node identifiers

LetW denote set of workflow identifiers

LetBy : N xM — [N x M x A] denote set of behaviours

Here one message can trigger several actions, therefbabstraction is used
The symboA denotes an action,

Let,A: N x M — W x M denote purpose of the action

Let,R: M — M for changing contents of a message using rendering as &servi

. Rendering as a service:corresponds to modification of a message upon user

interaction,m = R(m)

. Let,Bw : W x M — [N x M] denote workflow behaviour, to map a message to a

list of nodes

Flow mutation: (3weW,me M),3(m #m): (n',m) € L,L = Byw(w,m)

The key point here is presencédfx M — N x M instead oW x M — N

LetEn = {(n,m)|n€ N,me M} denote node event store

LetEw = {(w,m)|w e W,m e M} denote workflow event store

Letny € N, wy € W andm, € M denote no operation node and workflow and
empty message respectively

Forn,, the functionality is(w,, m) = Bn(ng, M)

Forw,, the functionality is(ny, m) = Bw (Wg, M)[O]

(Note here thaty, w,, are only for theoretical completeness, there are not actual
function calls in any implementation)

The workflow and node daemons are shown in (Algoritbhnand (Algorithm?2)

respectively. Some of the key inferences frommnioele processare as here.

* Node behaviour is plug and play, i.By can be dynamically configured

* The actions upon a given message&an be of two types - computational or user
interaction

» Rendering as a Servicelif it is user interaction typeR(m) can be used to render
a messagen € M and generate modified content

Some of the key inferences from thwrkflow processare here.

» Workflow behaviour is plug and play, i.8y can be dynamically configured

 Content drives the routing, i.&y(w,m), me M becomes critical

 Flow mutation: The workflow can modify the message, i.e. [{n’,n)...] =
Bw (w, m), 3m’ # mcan be true

Algorithm 1: Node Process

1 Workflow Daemon:

2 Bw = Bw+ < Wy, mg >
3 /lInfinite iteration

4 while |[Ew| > 0do

5 | if Jee Bw : €[0] # wy then

6 Ew=EBy—¢€

7 w = ¢[0]

8 m= ¢[1]

9 NL = Bw/(w, m) //get list of nodes to which this message is mapped
10 while (V(n’,m’) € NL) do

11 L En = Ex + (0,) //goes to node event store

Algorithm 2: Workflow Process

1 Node Daemon:

2 En = En+ <Ny, My >
3 //Infinite iteration

4 while |En| > 0do

5 | if 3n € En: n[0] # ny then

6 EN=En—n

7 n=nl0]

8 m=n[1]

9 AL = By(n,m) //obtain a list of actions

10 while (V(r',m,a) € AL) do

11 /lapplying actiono (-, -)

12 /I a can be user interaction or computational type
13 if a is user interactiorthen

14 | m’ =R(nm) //using rendering as a service

15 else

16 /lwhena is computational type

17 L m’ = x(n’,m) //lwherex(-,-) is a computational node
18 W, m") =a(n',m)
19 Ew = Ew + (W, m") //goes to workflow event store

13

3.2 Schematic of the system

The formalism may be realized in diverse platforms and appbn technologies. A
software design perspective of the formalism is presemidioe schematic (Figuré.1).
The workflow system focuses on flexibility and scalabilitg addressed at fundamental
level of message routing and processing. In this archite¢here are two types of nodes

- (i) user interaction processes and (ii) computationatesses.

Router 1

Router N

Routing
Jogic bB

Workﬂow . | —

= eee® o

l Domain DB
- =

Figure 3.1: Schematic diagram of workflow system is depiatethis figure. Green
rectangles indicate key functional nodes for Ul, Rendergmputations,
Workflow and Routing logic. There are 4 database each for,nedekflow,
routing logic and domain specific key-value information uiog logic can
be dynamically provided. The blue and orange small circtesespond to
messages before and after modification respectively by tdrkflow mod-
ule.

The workflows dynamically load routing logistics. This i®thlug-n-play mecha-
nism that brings in enormous flexibility to customize for&lise domains and at scale.
A reload of the routing logic does not require the restart system, it can be done on

the fly.

The routing logic modifies the message content as well, wiaatalled asflow

mutation This novel concept oflow mutationoffers flexibility to control workflows

14

across scenarios. This also decouples a node from the kagevtd workflows in which

it is participating.

A user interface node offers a friendly graphical interfacehe end user. The

interaction elements are customizable and can be dyndynmaddled or deleted. A

schematic of the user interface node is shown in (Figuge

Login
Password

User x
Role y
Job z

pending

Job 1
Job 2

type 1 text field

type 2 Option 1 'Cj'

Option2 (@

Option 3 ()

| |
vy

type 3 [file upload

-
type 5 \E} type 6 G

[remove | [remove |

execute ‘ save | reset |

Rendering As A Service

type 4 | Choice 1 B
Choice 2 [x|

Choice 3 D

type 7 | new tab |

Figure 3.2: Schematic depiction of a user interface typeenddhe node processes any
message characterized by user, role and job fields. Thdaoéehas in-
teraction elements of diverse types including: file uploadiverse types,
radio button, check boxes, text boxes and submit button eXbeute button
performs message modification and submission to the workfltvere are
convenience features to do-undo and reset.

The user interface node has the following type of interastj@and can be extended

based on implementation of the formalism in any specificpiat.
» Textinput

File upload
Radio buttons
Check boxes

e Submit buttons

Other may be added as required in any specific implementatio

The node execute button, confirms the data entered by thandeend thenodified

messagé¢o the workflow. The back-end workflow system then procedsesitessage

and routes the messages with or without modification to spes# nodes and the sys-

tem continues.

A user interface node interacts with a number of back-endulesd As the node

15

becomes agnostic of the workflows, it becomes thin. A thinenstill requires visual-
ization of content and interaction with user. This visuaiian as well can be off-loaded
as this is a common requirement across nod&sndering as a servide made. The

sequence of interactions with backend system are showngar@3.3) in adashboard

STEP 1: Login. Authentication happens in this step.

STEP 2: Selection of role and job.

STEP 3: Visualization of the rendered message by the Rengd8ervice
STEP 4: User interaction via graphical elements

STEP 5: Node execution

In addition, there are further options available to the sseh as,
» STEP 6: Add new/Delete/Modify jobs

» STEP 7: Add new/Delete/Modify templates
» STEP 8: Add new /Delete/Modify routing logistics

Ul Node

Pending Dynamic Interaction Elements
works

Text boxes Action buttons File upload
Role Job Submit buttons Radio buttons Multiple choice

Figure 3.3: This is a depiction of sequence of steps in a &piser interaction node.
The green rectangles indicate action modules and the neahloecles de-
note the sequence of steps. The orange rectancles indaizkground mod-
ules and their relationship to the foreground interfacee détailed steps are
covered in the manuscript text.

3.3 Features

16

3.3.1 Domain Agnosticism

All the workflow systems that have ever been built, were lfailt particular domain or
purpose. For example, a workflow system built for a pharm@caundustry may not
be suitable for an automobile industry as their requiresieaty. The proposed engine
is agnostic of all those and can cater to any use case. Itqeswaill the bare basics upon
which one can customize. The engine just acts as a ‘routenfofmation from node
to node, which routes based on some of the parameters of thento The engine is

unaware of this and just routes the information.

3.3.2 Content-based Routing and Dynamic routing

In traditional workflow systems, there’s no way to load ragtconditions dynamically
and content-based routing was not available. But here tiuditigm is solved using
a separate module that can be loaded dynamically, whichlhteealecision-making
logic for content-based routing. Content-based routingmsehe nodes to which the
information be forwarded will be decided based on some optrameters in the infor-
mation. And all that decision-making logic will be in a segi@ module and is loaded
dynamically based on requirement. Those modules can beasegar each workflow
and can be loaded based on requirement. They have a spew&bfuwhich will be
called in the central engine. The received data in the ceatgine and the previous
node’s ID are passed to the function and it returns a list diesdo which the data has

to be sent.

3.3.3 Flow Mutation

If a node is participating in multiple workflows, then compesding to each one, there
should be a piece of logic inside the node. This increasesdimplexity of a node and

its scalability is at stake. However, in our architectuhes gjostmanevel orchestrator

is upgraded to @oordinator. The coordinator not only looks at the message, it also
modifies it as required (Figurg.4). The node becomes so simple that, a typical user
interface node needs to just render action fields to a usés.eRables rendering itself

as a service.

17

Source Node Source Node Message W

e

Orchestrator | Our method-
Postman Coordinator

Target Node Target Node(s) f;::;;;ﬂl;tated

| | HigherComplexity | | { | Lesser Complexity Rendering as a Service
of Nodes of Nodes (for Ul nodes)
Knowledge of Visualization Kndv, & of Vig. ™ dtion
workflows (for Ul nodes) wori_.0 (f des)

Figure 3.4: A depiction of th8ow mutation concept. The present workflow systems
consider a router as postmantype there by leading to higher node com-
plexity. The figure depicts a complex node coupling with nogifogic and
rendering. The figure depicts the effect of decoupling a neitle routing
logic and making it a&oordinatortype and allowing flow mutation. A user
interface node is processed by the concepentlering as a servicehere
interface itself is dynamically generated.

In the formal representation, the orchestration logic caxlify the content leading
to plug-n-play of workflows. In the proposed architectureréhare three main aspects:
() routing logic modifies the message, (ii) rendering as raise and (iii) two types
of nodes. These aspects combined with micro services frankeand plug-n-play

workflow and node models, lead to a highly customizable wovkBystem.

3.3.4 Node Reuse

The nodes in the system are like functions in a programminguage. Reusable. Be-
cause a node does its job irrespective of the previous nadlghemext, a node can be
included in a number of workflows simultaneously. All thegokill be carried out one-

by-one or in parallel if the node is a compute node and can bg tinteaded.

3.3.5 Rendering as a Service

The service for rending offers rich types of interface eletaesuch as file upload, text
boxes, radio buttons, check boxes and submit buttons. Thesgaction elements can

be dynamically added as the message flows through the workftstem. Hence there

18

is a mechanism where each message comes with its own regdenplate as an at-

tribute for consumption by graphical nodes

3.3.6 Distributed Nature of Workflow System

The system itself is highly distributed (FiguBeb). On a single computer, there can be
several instances of workflow system. On multiple computées multitude of work-
flow system instances can talk to each other. The inter conuation happens between
a local and a remote system through ust&afsfer workflowsThe transfer workflows
remit messages in a receiver node dedicate in each workflsiemsyinstance for receipt

of message.

3.3.7 User-Interface Node

User should be able to view and edit the job information in @pgic user interface.
Information gathered should be parsed and sent to workfl@inen

3.3.8 Computational Node

The workflow should be able to do computation without useeraxttion. Computa-
tional nodes are used in machine learning scenario. Refgrteh55 for use cases on

computational nodes.

3.3.9 Web-API

All the nodes communicate over HTTP via REST API, which makegce abstraction
of resources. The entire information that flows will be in Msfaking it really easy

and light-weight to store and process.

3.3.10 Light Weight

The system is very lightweight can be executed on low endcéde\such as raspberry pi

in addition to server grade execution. (20 lines of cods flean 1MB of RAM required).

19

The user interface is flexible where rendering can also bairdd from other systems.
The proof of concept implementation is light weight whiclablesedge 10T devices to

run mini workflows and act as mini nodes and participate inrgéa workflow system

3.3.11 loT Enabled

In today’s modern world with a wide variety of scenarios, $dve become an integral
part of business processes. They collect data from the qgddysorld and help us take
actions accordingly or may be give it certain instructiomsld an operation. Surveil-
lance cameras, TVs, air conditioners and projectors., bageme internet-connected.
Including 10Ts in workflows could be quite useful in many usses. ‘Smart Campus’
and ‘Smart City’ are two of the biggest use cases for workflawith [0Ts. Traffic
management in a city and academic activities in a Univeisty be simplified with
a workflow which has support for 10Ts. Unfortunately, not\abrkflow systems in
the market support IoT devices. And since the proposedsydtes not differentiate

between nodes, I0Ts can be seamlessly integrated in anylowark

3.3.12 Communication Security

Security can be an issue while transferring informationt &uin the proposed architec-
ture, all the communication can happen on top of HTTPS whiakens it secure. Also,

explicit encryption can also be done at the nodes and tratiefeénformation.

3.3.13 Anonymity of Nodes

One of the most important features of the proposed engihe i@rtonymity of the nodes.
The nodes are anonymous to each other as they don't intertcéach other. A node
receives information from the central engine and irrespedf the previous node, this
node does its job and sends its response back to the cergraéein this way, no node

will know the existence of other nodes.

20

Workflow System Instance

A
Computational User Interface Local Transfer
Nodes Nodes Workflows Workflows
e Workfiow
\Node DB [DB

—

Computational
oo - Nodes
(Receiver)

Workflow system
instance 1

Workflow system
instance M

Computer

Receiver Nodes

Computer 1

Receiver Nodes

Computer N

Workflow system
instances (multiple)

Workflow system
instances (multiple)

Figure 3.5: A highly distributed workflow system is depicteere. (A) Denotes the
workflow system instance which as nodes of two types comipuitand
interaction type, local workflows and a transfer workflowhdts databases
for nodes and workflows. (B) Denotes one computer havingiptehvork-
flow system instanced deployed and running simultaneo(€lyDenotes
a scenario of multiple computers, each with a multitude ofkflow sys-
tem instances and inter communicating via transfer worlkdland reciever
nodes.

3.4 Proof of concept using Python and Flask

The formalism is implemented in Python environment usiraskllibraries for micro

services. A schematic view of the framework is shown in (Feg8L6). Rendering

service is provided as a function inside views.py file. Teatg® are stored in a template

database, out of which one selected and loaded by the regdssivice. The render
service uses Flask render_template API to generate HTMLrbggssing input JSON

objects. The file process_wf.py executes routing logicctis the workflow engine. It

can load on the fly routing codes. The exclusive schematiwdokflow engine is shown

in (Figure3.7). The process_wf.py fetches the routing codes and the spmreling

services functions and modifies the jobs and messages. Ttiéiedgobs are deleted

from workflow database and inserted into the node database.

21

render template service()

from DB

Get templ}ates

Fetch pending jobs 'Renderjob

 Fetcn tompletes , Toraras
o8

|
Render template

* views.py

o

E)deDB

Rout-hg Logic

Remove from Node DB

Modify message

Add text, checkbox,
dropdown, radio button
or file.

Y

process wipy

and insert in Workflow DB

Poll for ms
o nsg Workflow DBJ

Figure 3.6: This figure depicts modules in the proof of conegstem built using

python and flask libraries. The user interaction componargsshown in
green colour. The HTML box corresponds to user visualizeiod interac-
tion with graphical elements. Databases for node, workflod templates
are shown as cylinders. Arrows indicate flow of data or nespst The
annotations on top of arrows denote specific relationships.

___——> process_workflow py e

_Import
corresponding

/ service functions \

I
SERVICES

sAcademics:

oCourse registration

oAdd drop forms

olnvigilation

oHTRA forms
#Genetic Algorithm
eSmart campus
sAnnotator
#5Smart traffic management
o[0T scenario

2_Import routing logic as
conditions.py

Corresponding routing

logic:

sAcademics
oCourse registration
cAdd drop forms
olnvigilation

\

1. Get jobs fro
workflow queue'and oHTRA forms
delete eSmart campus
/' sAnnotator

4_Insert the
modified jo

eSmart traffic management
i eloT scenario

e /—I\

&=
Node DBW Workflow DB 1
e

Figure 3.7: This figure depicts the process_wf.py modullt bsing python. Databases
for node and workflow are shown as cylinders

22

CHAPTER 4

Results - Course Registration/AddDrop Forms

4.1 About this Chapter

The proof of concept and the core architecture discussedopisy are verified in this
and the subsequent two chapters by demonstrating varieusases incorporating both
user nodes and computational nodes. Three types of useaa@ssksown here. They

are:
1. Academic use cases involving processes course regstratiding or dropping

courses, exam invigilation duties, half-time teaching aegkarch assistantship
forms. Implementing such use cases is part of the Smart CaByasiem, making
such institute processes seamless.

2. A simple general use case to illustrate adding dynami thethe user node.

3. Data Generation involving computation nodes.

The proposed system works on top of HTTPS, a secure encrgptetection over
the internet, to eliminate any security issues. The prapegstem implements REST-
ful web services, and every node will act as a micro serviak immespective of the
technology used at the node. Since the REST paradigm esftreeabstraction of re-
sources, nodes can communicate with the central enginewtitiny problem. All the
communication occurs in JSON form, a universally accepbechat for data sharing,

which is also lightweight for processing.

4.2 Course Registration

This use case involves an example of a smart campus scerfaie wtudents enrol for

courses, the sequence is depicted in4ig.

First, the academic section need to login user their usegrzard password as shown
in fig. 4.2 The corresponding dashboard is shown in fig3. On the right, there is a
button called as Add Job. On clicking, various templatesielayed. These templates

are accessible only to the academics. Click on course ratiest as shown in fig4.4.

_Start

Login: Dashboard Create a Template:
Academics Course Registration
Faculty advisor Students upload filled and Send an empty template(pdf
acknowledges the [« — signed course registration +—————— of add/drop course) to
form and signs it form students

Y

) Background process

PRSI downloads all the signed

][sf:lves el forms into a proper directory +@
structure automatically

Figure 4.1: The figure depicts flow of steps in the scenaricdarrse registration in an
academics scenario.

In this job which is created, academics should give a job ndrench and an empty

course registration form as shown in fig5. On clicking the submit button, the job is

sent to all the students.

Workflow

%) Login

Figure 4.2: The figure depicts the login page with acadenredantials.

Now, students can login and see course registration job figh) &nd the empty
course registration form that the academics have sent to fige (4.7). Students can
fill this PDF form with the necessary details along with thegnature. On submit, the

job will be sent to that corresponding faculty advisor.

Now, the faculty advisor checks the PDF form signed by thdestufig. @.8), signs
it and executes the job. This job is sent to academics #ig9).(The student gets a

notification that the faculty advisor has sent this job toabademics.

24

Workflow

Welcome academics !

4 Select Template

Pending jobs:

Figure 4.3: The figure depicts the dashboard of academics.

Workflow

Welcome academics !

course_registration [

Pending jobs: course_add_drop

invigilation

general
htra_forms

htta_forms

Figure 4.4: The figure depicts the templates available fadamics.

Workflow

Welcome academics !

4 Select Template

Add Data

Job_name CR
Pending jobs:
Batch B.tech-2017 v
course_registration
Branch Computer_Science_and_Engineering v
Registration_form Choose File | CSE-VIILpdf

Figure 4.5: The figure depicts the rendered job for acadendicademics has entered
the job name and uploaded the empty Course Registration form

25

Workflow I Dashboard A Notifications & Change Password @ Logout

Welcome B123 !

4 Select Template
Add Data
Batch B.tech-2017
Branch Computer_Science_and_Engineering
Pending jobs:

course_registration Registration_form CSE-VIll.pdf
Rollno B123
Student_name Abc

CR

Faculty advisor advisor1
Unsigned_form Choose File | No file chosen

Figure 4.6: The figure depicts the rendered course regmtrgtb in the Student Dash-
board.

An additional service node, acads_bg.py can be used to dagrdll the files in a

structured directory as shown figt.10.

4.3 Add/Drop Course

This use case involves an example of a smart campus scenaeie \8tudents enrol
for courses and later change their decision is depicted infifyl. The scenario is as

follows:

First, the academic section logs in using their usernamepasdword. The corre-
sponding dashboard is displayed. The academics can addjalméw add/drop course
from the preexisting templates as shown in figl2 In this template job, the academics
can enter the job name and upload an empty add/drop courséoPDfs shown in fig.
4.13 On submit, the job is sent to all the students. The messdge safbmit is as
shown in fig.4.14 There is a database collection containing all the studetaild like
name, roll number, faculty advisor, branch, year, batchwtudents can login and see
add/drop course job (figd.15 and the empty add/drop form that the academics have
sent to them (fig4.16). Students can fill this PDF form with the details of courses;
responding instructors and other information along witkirtilsignature. The students
also have to enter the course ID for which the correspondisguctor’s signature is
required and upload the filled form as shown in figl7. On submit, the job will be

sent to that corresponding instructor.

26

wyretm et s Breht

th M g pb Indian Institute of Technology Tirupati

|||| I Il| ||||[Renigunta Road, Tirupati - 517 506, A.P.

TIRUPATI

Email: academicyiiitp. oe.in ACADEMIC SECTION Phane: 1877-2503531

Course Registration Form

Jan-Tune 2021 Semester

Roll No: Branch : Computer Science and Engineenng
Wame Semester; VIII
5.No Slot Course No Name Category | Credits
Department Elective-3
1. DPE3 PMT 3
2 G HS3050 Profazsional Ethies HPE 2
Total
Student Signature Faculty Advisor
Date: Signature:
Mams:

Figure 4.7: The figure depicts the empty course registrdtion sent by academics to
the student.

27

Workflow

Welcome advisor1 !

4 Select Template

Add Data
Batch B.tech-2017 v
Branch Computer_Science_and_Engineering v
Pending jobs:
courseJeg\sUann Rollno B123
Student_name Abc
Faculty_advisor advisor1
CR
Unsigned_form CSE-VIII-B123.pdf
Signed form Choose File | No file chosen

Figure 4.8: The figure depicts the rendered course regmtragb in the Faculty Adiv-
sor Dashboard, containing the form filled by student.

Workflow

Welcome academics !

4 Select Template

cm

Batch B.tech-2017 v
Branch Computer_Science_and_Engineering v
Pending jobs:

course_registration_forms Rollno B123
Student_name Abc
Faculty_advisor advisor1

CR

Signed_form CSE-VIII-B123-signed.pdf
Processed No

Figure 4.9: The figure depicts the rendered course regmtrggb in the Academics
Dashboard, containing the form filled by student and ackadgéd(signed)
by Faculty Advisor.

Figure 4.10: The figure depicts the directory where all thgmead course registration
form is downloaded automatically.

28

I: Home Page :I

Login to
Academics

Select Add/Drop

Dashboard
Course template

(Academics)

Instructor receives)
templates, signs it and | Studer}tﬁeﬂgt}nigstans of Senttiht:eqttjdnéﬂlgte to
sends to student - -

'Y

) 4
s ™) ' . G
. . . Faculty advisor
Students receive the - Student receives form signed acknowledges the form, Academics receives
template and sends to by all course instructors and signs it and sends to the form
next course instructor sends it to faculty advisor R e
L Y academics

Figure 4.11: The figure depicts flow of steps in the scenarnadorse add and drop in
an academics scenario.

Welcome academics !

4 Select Template

Add Data

Job_name

Add_drop_form Choose File | No file chosen

Pending jobs:

course_add_drop

course_add_drop_1

Figure 4.12: Figure showing adding a new job for add/drops®template

Welcome academics !

4« Select Template

Pending jobs:

Add Data

Job_name March 2021

Add_drop_form Choose File | Add_Drop_Courses.pdf

course_add_drop

course_add drop_1

Figure 4.13: Figure showing academics entering the job reamdeiploading PDF form
just before sending to students

Welcome academics !

4 Select Template

Pending jobs:
The job has been processed

Figure 4.14: Figure showing a message after submit and jolmessed

29

Welcome B123 !

4 Select Template

oo
Course_id
Add_drop_form Add_Drop_Courses.pdf
Pending jobs: O Yes
course_add_drop Send_to_faculty advisor ® Mo
Rollno B123
m Student_name Abc
Faculty_advisor advisor1
Unsigned_add_drop m No file chosen

Figure 4.15: Figure showing student’s dashboard

+ | 3

Indian Institute of Technology Tirupati
Renigunta Road, Tirupati — 517 506

Course Add/Drop Form

Roll No & Name
Branch
Semester & Year

Name of the Faculty Advisor

Faculty
Signature

Course No Course Name Faculty Name

Signature of Faculty Advisor Signature of the Student
Date: Date:

Figure 4.16: Figure showing empty add-drop course PDF form

30

Welcome B123 !

Pending jobs:

course_add_drop

100

4 Select Template

o]

Course_id

Add_drop_form
Send_to_faculty advisor

Rolino
Student_name
Faculty advisor

Unsigned_add _drop

Cs123
Add_Drop_Courses.pdf
O Yes
® No
B123
Abc
advisor1

Choose File | Add_Drop_Courses_B123.pdf

Figure 4.17: Figure showing student’s dashboard with jeblpefore sending to course
instructor

The instructor can now login and see the pending add/drapfjoim the students(fig.
4.18. The instructor can verify the PDF form signed by the stugn 4.19 and up-

Welcome instructor_1!

4« Select Template

[osone

Course_id CS123

Course_name course_1

Pending jobs: Course_instructor instructor_1

course_add_drop
Rollno B123

Student_name Abc

Faculty advisor
Unsigned_add_drop

Signed_add_drop

advisor1

Add_Drop_Courses_B123.pdf

Choose File

No file chosen

Figure 4.18: Figure showing course instructor’s dashboard

load their form after signing(fig4.20. On execute, this job will be again sent to the
student. The student can now see the job and{igl) only verify the add/drop PDF
form(fig. 4.22). After verification, the student can now edit the course ¢aia and
send this form to another instructor as needed. It is to bedhtftat the student can
send this form to his/her faculty advisor at any time. By défahis option is given as
'NO’. After all the course instructor(s) sign the add/draqucse PDF form, the student

can now select 'YES'’ for sending it to the faculty advisortteay the student needs

31

Indian Institute of Technology Tirupati
Renigunta Road, Tirupati — 517 506

Course Add/Drop Form

Roll No & Name : BI123 Abc
Branch Computer Science and Engineering
Semester & Year VIII 2017

Name of the Faculty Advisor advisorl

Add

Course No Course Name Faculty Name I_:acnlty

123 course_1 instructor_1

instructor_2

. . AbcB/23
Signature of Faculty Advisor Signature of the Student
Date: Date: 7/7/2020

Figure 4.19: Figure showing PDF form sent by the studenteéaturse instructor

Welcome instructor 1!

4 Select Template

[
Course_id CS123
Course_name course_1
Pending jobs: Course_instructor instructor_1
course_add_drop
Rollno B123
Student_name Abc
m Faculty_advisor advisor1
Unsigned_add_drop Add_Drop_Courses_B123.pdf
Signed add drop Add_Drop_Courses_B123_2.pdf
)

Figure 4.20: Figure showing course instructor's dashbbafdre sending to student

32

Welcome B123 !

Pending jobs:

course_add_drop

4 Select Template

Add Data

Course _id

Add_drop_form
Send_to_faculty advisor

Rollno
Student_name
Faculty_advisor

Signed _add drop

Cs123
Add_Drop_Courses.pdf
O Yes
® No
B123
Abc
advisor1

Add_Drop_Courses_B123_2.pdf

Figure 4.21: Figure depicting student dashboard with jakiked from the first course
instructor

Indian Institute of Technology Tirupati
Renigunta Road, Tirupati — 517 506

Course Add/Drep Form

Roll No & Name B123 Abc

Branch Computer Science and Engineering

Semester & Year VI 2017

Name of the Faculty Advisor advisorl

Add

Faculty
Signature

nalicecte

Course No Course Name

123

Faculty Name

course_1 imstructor_1

course_2 instructor 2

AbcBr23

Signature of the Student
Date: 7/7/2020

Signature of Faculty Advisor
Date:

Figure 4.22: Figure showing PDF from filled by one courserutgbr

33

the signature of another course instructor. The studemgssathe course ID, sends to
instructor, the instructor verifies, signs and on submé,jti goes to student again(fig.

4.23. This can be repeated many times as shown in4igl Finally, student selects
Welcome B123 !

4 Select Template

Course_id EE456
Add_drop_form Add_Drop_Courses.pdf
Pending jobs: O Yes
course_add_drop Send_to_faculty advisor ® No
Rollno B123
m Student_ name Abc
Faculty_advisor advisor1
Signed_add_drop Add_Drop_Courses_B123_2.pdf

Figure 4.23: Figure showing the student dashboard with gaieived from course in-
structor

'YES’ and submits to faculty advisor(figt.24).

Welcome B123 !

4 Select Template

o]
Course_id EE456
Add _drop_form Add_Drop_Courses.pdf
Pending jobs: @® Ves
course_add_drop Send_to_faculty advisor O No
Rollno B123
m Student_name Abc
Faculty advisor advisor1
Signed_add_drop Add_Drop_Courses_B123_3.pdf

Figure 4.24: Figure depicting student dashboard with senth faculty advisor radio
button changed to 'YES’

Finally, the faculty advisor logs in(fig4.25, checks the PDF form signed by the
student(fig4.26) and the course instructor(s), signs it, uploads the fordnsatmits the

job. This job is sent to academics. Under the role, add/doapse forms, academics

34

Welcome advisor1 !

4« Select Template

Roll B123
Pending jobs: olino
course_add_drop Student_name Abc
Faculty_advisor advisor1

m Unsigned_add_drop Add_Drop_Courses_B123_3.pdf
Signed faculty advisor Choose File | No file chosen

Figure 4.25: Figure showing faculty advisor's dashboard

Indian Institute of Technology Tirupati
Renigunta Road, Tirupati — 517 506

Course Add/Drop Form

Roll No & Name 3 BI23 Abc

Branch 2 Computer Science and Engineering
Semester & Year 5 VIII 2017

Name of the Faculty Advisor 3 advisorl

Add

Faculty
Signature
123 course_1 instructor_1 wnalicecton/

Course No Course Name Faculty Name

instructor 2

ABeF/23
Signature of Faculty Advisor Signature of the Student
Date: Date: 7/7/2020

Figure 4.26: Figure showing PDF form filled by two courseruastors

35

can see all the students’ forms as shown in4i@.7. The PDF file received is completely

Welcome academics !

4« Select Template

Add Data

Roll B123

Pending jobs: olino
add_drop_forms Student_name Abc

Faculty_advisor advisor1

m Signed_faculty_advisor Add_Drop_Courses_B123_4.pdf

Processed No

Figure 4.27: Figure showing jobs received from studentsdaglamics

filled(fig. 4.28. The student can view all the notifications to get acknogéetithat the
faculty advisor has sent this job to the academics. Thisagehn fig. 4.29 Similar to
course registration, An additional service node, acadgybtan be used to download

all the files in a structured directory.

36

Indian Institute of Technology Tirupati
Renigunta Road, Tirupati — 517 506

Roll No & Name

Course Add/Drop Form

B123 Abe

Branch Computer Science and Engineering
Semester & Year VIII 2017
Name of the Faculty Advisor advisorl
Add
Course No Course Name Faculty Name]-“aculr_v
s Signature
123 course_| mstructor_1 wnaliceclBn/
Drop
456 course_2 mstructor 2 Viralicecl Bl
AbcB/23

Signature of Faculty Advisor

Date:

Signature of the Student
Date: 7/7/2020

Figure 4.28: Figure showing completely filled add/drop form

Notifications for B123

Timestamp

Notification

20-04-2021 10:49:07

March 2021 (course_add_drop) sent to academics Delete

20-04-2021 10:47:57

March 2021 (course_add_drop) sent to advisor1 Delete

20-04-2021 10:46:26

March 2021 (course_add_drop) sent to instructor_2 | BMEE

20-04-2021 10:42:36

March 2021 (course_add_drop) sent to instructor_1 | BBEEE]

Figure 4.29: Figure showing Student Notifications

37

CHAPTER 5

Results - HTTA/HTRA Forms

5.1 HTTA/HTRA forms

This use case involves an example of a smart campus scenaei@ \students fill the

HTRA/HTTA form, the sequence is depicted in Figl

Start
Login: Dashboard Create a Template:
Academics HTRA Form
.) - Send an empty template(pdf
Supervisor fills the Students upload filled and -
form signs it — signed HTRA form [1 of add/drop course) to
students
Y
Background process
Guide fills the form Academics receives | downloads all the signed End
signs it signed form forms into a proper directory 0
structure automatically

Figure 5.1: The figure depicts flow of steps in the scenaridfoRA form in an aca-
demics scenario.

First, the academic section need to login user their usezreamd password. The
corresponding dashboard. On the right, there is a buttéeccas Add Job. On clicking,
various templates are displayed. These templates ares#ideesnly to the academics.
Click on HTRA as shown in Fig5.2 In this job which is created, academics should
give a job name and an empty HTRA form as shown in Bi§. On clicking the submit

button, the job is sent to all the scholars.

Now, the scholars can login and see the HTRA job (5ig) and the empty HTRA
form that the academics have sent to them (BEigp). Students can fill this PDF form
with the necessary details along with their signature. Gimst) the job will be sent to

that corresponding TA Supervisor.

Workflow

Welcome academics !

course_registration [

Pending jobs: course_add_drop
The job has been processed invigilation
general

htra_forms

htta_forms

Figure 5.2: The figure depicts the templates available fadamics.

Workflow

Welcome academics !

4 Select Template

Add Data

Job_name HTRAT

Pending jobs:

htra_form
Htra_form Choose File |HTRA_FORM pdf

Figure 5.3: The figure depicts the rendered job for acadendicademics has entered
the job name and uploaded the empty HTRA form.

Workflow

Welcome S$S123 !

« Select Template

s
Htra_form HTRA_FORM.pdf
Rollno s123
Pending jobs: Student_name Pqr

hura form Branch Computer_Science_and_Engineering
Batch M.S(Research)

Guide quide_1
Ta_duty_supervisor supervisor_2
Htra_student signed Choose File | No file chosen

Figure 5.4: The figure depicts the rendered HTRA job in thel&tt Dashboard.

39

Renigunta Road. Timpati - 517 506, AP,
TIRUPATI ACADEMIC SECTION

.iﬁ |'I'-ITM Indian Institute of Technology Tirupati

Date:

HIRA FORM

This is to certify that T, Mr/Ms.
Foll No. a2 Stdent of M.S{Research)PhD in the Department of

at IIT Tirupati has actually worked for & hrs/week under

HTFA work dunng the month of 2021. Further. I am not recelving a
stipend/fellowship from any other external source for the month of 2021,
Signature of the Stadent:
Guide
Satisfactory Partially Satisfactory Not Saticfactory
Femarks:

Name & Signature of the faculty:

T.A. Duty Supervisor

Satisfactory Partially Sahsfactory Not Satisfactory

Femarks:

Name & Signature of the faculty:

Note: The T_A and Thesis Supervisor are requested to put a tick mark in the appropriate box and provide
remarks in case of Partially Satisfactory and Not Satisfactory.
The form has to be submitted before 20 of each month

Figure 5.5: The figure depicts the empty HTRA form sent by acads to the student.

40

Now, the TA Supervisor checks the PDF form signed by the stufieig. 5.6),
signs it and executes the job. This job is sent to correspgngliide. The student gets

a notification that the TA Supervisor has sent this job to tinde (Fig.5.7).

Workflow

Welcome supervisor_2 !

ED
Rollno s123
Student_name Pqr
Pending jobs: Branch Computer_Science_and_Engineering
e Batch M.S(Research)
Guide guide_1
e
Htra_student_signed HTRA_FORM_S123.pdf
Htra ta supervisor signed Choose File | No file chosen
=3

Figure 5.6: The figure depicts the rendered HTRA job sent bgesit to the TA super-
visor. The supervisor can click on the PDF file to view the form

Workflow

Notifications for $123

Timestamp Notification

21-04-2021 12:56:10 | HTRA1 (htra_form) sent to guide_1 Delete

21-04-2021 12:55:45 | HTRA1 (htra_form) sent to supervisor_2

Figure 5.7: The figure depicts the notifications of the staden

Now,guide can check the PDF form signed by the student andup®e&isor (Fig.
5.8), signs it and executes the job. This job is sent to acadeffigs5.9). The student
gets a notification that the guide has sent this job to theeanars. An additional
service node, acads_bg.py can be used to download all te@fiéestructured directory

as shown in Course Registration use case.

5.2 General

For a general template, let’s consider a simple use caseae Hne three nodesx, ny
andnz. The routing takes place asx — ny — nz. First,nxis logged in. Add a general

template as shown in fig.10

41

Workflow i ons & ® Log

Welcome guide_1!

4 Select Template

)
Rolino 123
Student name Pqr
Pending jobs: Branch Computer_Science_and_Engineering
hura.form Batch M.S(Research)
Guide guide_1
Ta duty supervisor cupenvior 2
Htra ta supervisor signed HTRA_FORM_S123 supervisor.pdf
Htra signed Choose File |No file chosen

Figure 5.8: The figure depicts the rendered HTRA job sent byST{ervisor to the
guide. The guide can click on the PDF file to view the form.

Workflow

Welcome academics !

4 Select Template

(oo
Rollno s123
Student_name Pqr
Pending jobs: Branch Computer_Science_and_Engineering
HTRA_forms_collected Bateh S —
Guide guide_1
Htra_signed HTRA_FORM_S123_guidepdf
Processed No

Figure 5.9: The figure depicts the job containing the conhpféted HTRA Form.

Welcome nx !

4« Select Template

Add Data

Job_name

Pending jobs:

r2 r1 general

Role general

Figure 5.10: Figure showing dashboardchafand adding a general template

42

Job name and role name can be added as required(fig). On submit, the job

Welcome nx !

4 Select Template

Add Data

Job_name sample job

Pending jobs:

r2 r1 general
Role test_role

Figure 5.11: Figure showing entering job name and role nangemeral template

gets sent to nodey. Logging in tony, the role and job are displayed.

Dynamic data which could be of text, dropdown, checkboxiarddtton or file type,

an be added usingdd Databutton. This is shown in figh.12 As an example, text(fig.

Table Fields

Select the type of fields..

select from options
select from options
Text

Dropdown
Checkbox

Radio Button

Upload file

Figure 5.12: Figure depicting different fields of data theat be added

5.13 and drop down(fig.5.14) are added as shown in fig.15 Also, checkbox(fig.
5.16), radio(fig. 5.17), file(fig. 5.18 fields are added as shown in fi§.19 There
is a remove button to remove the fields as needed. The fielddledeas shown in fig.

5.20and on submit, the job is senth@ nzlogs in and sees the job that has been sent
by ny(fig. 5.21).

43

Table Fields

Select the type of fields..

Text

key |test key

value |[sample texd

Figure 5.13: Figure depicting adding text field

44

Table Fields

Select the type of fields..

Dropdown

Key |test drop

Add values..

Values:

abc Remove

Remove

Remove

Figure 5.14: Figure depicting adding drop down field

4 Select Template

Add Data

Job_name sample job
test key sample text Remove
test drop abc M Remove

Figure 5.15: Figure showing job after adding text and droprdtelds

45

Table Fields

Select the type of fields..

Checkbox

key 'sample check

Add values..

Values:

Remove

Remove

Remove

Figure 5.16: Figure depicting adding checkbox field

46

Table Fields

Select the type of fields..

Radio Button

key |sample radio

Add values..

Values:

Remove

Remove

Figure 5.17: Figure depicting adding radio button field

47

Table Fields

Select the type of fields..

Upload file

key |sample filel

Figure 5.18: Figure depicting adding file upload field

4 Select Template

Add Data

Job_name sample job

test key sample text

test drop abc v
01

sample check o2
03
O yes

sample radio

P O no
sample file Choose File | No file chosen

Figure 5.19: Figure showing job after adding all the possitalds

48

4 Select Template

Add Data

Job_name sample job

test key sample text

test drop def M
1

sample check Q2
3
® yes

sample radio Ono emove

sample file Choose File | arctic_fox-wallpaper-1920x1080.jpg

Figure 5.20: Figure showing job after filling in the data ihthk fields added

Welcome nz!

4« Select Template

Add Data
Job_name sample job
Test Key sample text
Pending jobs: Test Drop def
test_role ;

Sample Check o2

3

sample job

® yes
S le Radi
ample Radio oo
Sample File arctic_fox-wallpaper-1920x1080.jpg

Figure 5.21: Figure showingz dashboard and the job received from

49

CHAPTER 6

Results - Data Generator based Continual Learning

Systems for Edge Devices

6.1 About this Chapter

Neural networks suffer from Catastrophic forgetting pesblwhen deployed in a con-
tinual learning scenario. Pseudo rehearsal is a technidpgeena generator is used to
synthetically generate training data of the previous tasktrain the neural network to
prevent forgetting. Edge devices usually have severe ctatipoal and memory con-
straints which limits the deployment of pseudo reheardatises directly on them. In
this chapter, a continual learning system that deploys émeigator on a server and reg-
ularly updates the neural networks deployed on the edge evieemequired is demon-

strated.

6.2 Remote Data Generation (RDG) architecture

This scalable and flexible system, to implement synthetia ganeration is proposed as
a service, that is called as Remote Data Generation (RD@®jtecture and it consists
of a Data service, Prediction service, Training servicel @ontroller service. Two
types of nodes are possible in this workflow: User-Interfdh nodes such as the
controller, where the parameters of the model are configamdl computational nodes
such as Prediction service, Training service, Data serVikbe role of each service is as

follows.

6.2.1 Prediction-Service

The prediction services’ primary function is to generatedictions for given input data
using the deployed neural network. In case of a federateditensetting, the predic-

tion service could be running on the edge device. And in cAsecentralized setting,

the prediction service also could be running on the cloudgiaicopy of the deployed
neural network to improve latency times. The predictiorvieerplays an integral role
when generating synthetic data using Genetic Algorithniee Jynthetic data is gener-

ated by constant interactions between the data servicenamutédiction service.

6.2.2 Training-Service

Training-service is designed to retrain the model usingsthehetic-data generated by
Data service. It updates the model, and that updated vecsiorbe deployed to the
edge devices. One significant advantage of implementingparae microservice for
training the neural networks is that, while other servicas be deployed on cheaper
hardware with low computational capabilities, the tragngervice can be deployed on

specialized hardware that are optimized for training psees.

6.2.3 Data-Service

Data Service’s primary function is to generate syntheti@a aa provide original data
for retraining neural networks deployed on edge devicedakés labels or class as
input and produces respective data as output. The datasermuld consist of a data
generator like GAN, GMM or Genetic Algorithms or could be dakmse consisting of

original data directly.

6.3 Genetic Algorithm (GA) as a data generator

This is an micro-service style implementation of the systnoposed bySuri and
Yeturu(2020, where synthetic data is generated by a series of commntionisdetween

Genetic Algorithms and the deployed neural network.

To generate the synthetic data for a target class, the @ehlgirithm begins with
a random set of images which are then given to the deployedonetfor prediction.
the softmax confidence of the network on these images foatiget class is considered
as their fitness scores. the fittest 24% individuals are sethetnext generation, where

a series of mutation and cross-over operation are followgmbpulate the next genera-

51

Workflow (N\/’ Synthetic Data Controller Node
P

Start Session, /’1\
4Tralnlng Y

GA service

Session 1| |Sessi0n 2_§|_Session 3

Figure 6.1: Figure shows the interaction between contralhe the database via work-
flow system when generating synthetic data using GenetiorAlgns.

; Controller Node Database |
Workflow Synthetic Data s
along with ge Devices
P fitness score
g |
~
A
A Training service
2 Mg
Bad /Aivaluate\\ Good
Delete Synthetic Data "—/\ Fitness e &
\5¢® " pata 2 Push to edge
L 2 devices
e~

Data Backup Service

Do L

Figure 6.2: Figure shows the shows the retraining procetiseaystem after synthetic
data has been generated.

52

tion. This is repeated until the organisms of a given ger@raeach a certain fitness
threshold.

To implement this technique, a Genetic Algorithm is impleneel as the generator
service. the GA service generates synthetic images and skardh to the prediction
service via the workflow. the prediction service predicts $icore using the deployed
model and returns it to the workflow system. GA service use9tiedicted scores to
generate a new batch of images. the controller specifiaauimder of generationgp to
which the service should generate images. Each generaifiayewerate images where

the fitness of population is greater than previous generatio

Figure 6.1 shows the steps involved in generating synthetic data framme and
event perspective. A step-wise list of interactions betwd#® services is provided

below:

» STEP 1: At time stefy, the controller node requests to begin the training via
workflow and the GA service generates the first batch of images

» STEP 2: AtT,, images or synthetic samples that are generated by the Giser
are sent to Prediction Service via the workflow.

» STEP 3: AtTs, the Prediction service receives the images and then gethen
prediction scores for all the images.

* STEP 2 and 3 are repeated until a certain fitness threshotédéhed or until the
number of iterations is finished.

» STEP N-2: AtTy_», the score for each synthetic sample is sent to the GA service

» STEP N-1: AtTy_1, the GA Service realising that the fitness threshold has been
reached will send the final synthetic data to the controlieitive workflow.

» STEP N: At time stedy, the workflow routes the synthetic data to the controller

and message is sent to GA service to stop the training.

All the request which happen between nodes/services arkflawwrhappen as post
requests and data flows as JSON objects. An independerdrsesspened between the
GA service and prediction service to increase the througbihhe system by allowing
simultaneous executions for multiple systems. Figugshows the steps involved after
this synthetic data is received by the controller from thekflow. the controller has
two jobs to do: (1)To start the session; (2) To evaluate ttadityuof the synthetic data
generated. After receiving the synthetic data, the coetrd presented with an option
to whether or not retrain the model on this new synthetic.d@mbeing satisfied with
the quality of the generated data, the controller can pusisyhthetic data along with
the command to "retrain” the model to the workflow system wvibekflow system then

routes the synthetic data to tfieaining service

53

A copy of the synthetic data sent is also sent tadéia backup servicehat stores the
synthetic data for future use. If the generated images’dgrseore is not high enough,
then the controller instructs the workflow (by setting thessage "delete data") to
delete the synthetic data. Training service will retrai@ thodel based on the synthetic
data and upgrade the model. Now this upgraded model can b&oseage devices for

deployment.

6.4 General Adversarial Networks (GAN) as a data gen-

erator

~— Synthetic Data of
Workflow 8) target labels _ | Controller Node

g o=
%ﬁ Target labels (1)
__/”

Data generator Prediction service
Gaussian Mixture
Models ->
_)
Generative £
Adversairal
Networks

Figure 6.3: the block diagram shows the interactions batweious services when
either GMM or GAN are used as Data services.

Shin et al. (2017 suggested use of Generative Adversarial Networks (GANS) a
generatordo generate synthetic data. In this technique, insteadooinst the original
data, a Generative Adversarial Network is trained untiait synthetically recreate the
original data. This fully trained GAN is stored in a database the original data is
then discarded. This technique greatly saves space asgtGAN consumes much
lesser space compared to storing entire original data. drbéginning of the process,
the controller sends the request to workflow with the reqgliiaeget labelsas shown in

Figure6.3.
Theworkflow systerthen sends the requestdata servicavhich in this case has a

54

Data generator

N fasstuii (N ROSSSREN
(N | Adversarial | GMM
| Network |

- B : MNew batch of data
B,,: Old batch of data
&P Data concatenator

Deployed Neural network

Figure 6.4: the figure shows the concept of pseudo rehedngatynthetic data of pre-
vious batch, generated using GAN or GMM are interleaved thighnewly
arrived training data.

GAN in it. the request is send as a JSON object which has mesg with various
flags and variables that describe the desired propertidgedyinthetic data.

Data service then generates the synthetic images uponstege sends back to
the workflow system. Since the data generated by GAN is uliéahehe workflow
system sends the synthetic data to the prediction serviesenhpredicts the labels of
the generated samples. these predictions are sent baok vetkflow. the workflow
system finally filters out the samples belonging to the tartgsses based on the newly

generated labels and sends these samples to the contoolietriining.

6.5 Guassian Mixture Models (GMM) as Data Genera-

tor

In a Gaussian Mixture model, the dataset is assumed as atami®f n Gaussians. A
Gaussian Mixture Model can also be used as a data generafrsgfodo rehearsal. Just
like using GAN as a generator, using of GMM as a generatoovadla similar process.
the controller first initiates a request to generate samyléise target classes with the
workflow. The workflow sends a command to the GMM which is indla¢éa service, to

start generating synthetic data. the data service respmaudksto the workflow system

95

with the synthetic data. As the synthetic data is unlabetleelworkflow systems sends
the data to the prediction service which labels the data. Wikflow system uses
these labels to filter out the samples belonging to the talgsses and sends them to

the controller.

6.6 Original Data as a service

Pare
4
Workflow &) Requesteddata | conproller Node

T

%a Target labels (lj
___/

L

F\a.‘f; .;_ 27)

Requested Request data
data of target
classes

Database with
original data

Figure 6.5: Figure shows the interactions between the Glatand the database con-
taining the original data.

Robins (1995 proposed the concept &tehearsgl where the neural network is
trained on original data of the previous task to preventstaetphic forgetting. However,
storing of entire previous data requires allocation of aersble memory resources
which is not feasible for edge devices. therefore, by deptpyhe original data on
the cloudas-a-serviceand then requesting the subset of it according to the nedtkof t
deployed model might be an optimal solution. The proposetitcture can be used
in both federated learninBonawitzet al. (2019 setting where each deployed model
is personalized according to the user, or a centralisemhgethere a central controller
periodically pushes one uniform model to all the edge deviEggures.5depicts a cen-
tralised setting where a human controller initiates theiestjfor data. The controllers
request is routed to the workflow, which in turn raises a retjuéth the original data
service. the data service returns the requested data taitkéaw system which routes

it to the controller. the controller is then presented witbhaice whether to re-train

56

the model on it or not. If the controller chooses to retramiodel, the synthetic data
is passes to theaining servicewhich loads the model and retrains it. This retrained
network can be considered as the upgraded model which igptisdred to edge devices
for deployment. In contrast, in a federated learning sgttime retrain service is present

on the edge device itself, where the deployed model is reddeand then deployed.

6.7 Implementation Details

The proposed system was implemented completely in Pythngubge, however, it has
to be noted that the user is free to implement any of web-sesvising a different as
the proposed system is platform agnos#dask library Grinberg(2018 was used to
build and deploy all the web-services whiRequestdibrary was used to implement
the HTTP POST and GET requestdumpyHarriset al. (2020 was used to represent
and generate synthetic data throughout the system. Repiregthe data using Numpy
arrays allows us to use the system in non-image applicaéisnsgell. MongoDB was
used to implement all the databases in the system. The réasselecting MongoDB
over SQL is that JSON objects were used to transmit data leetaeferent services
in our workflow. As SQL has statitable-orienteddesign where the columns of the
table have to be predefined, inserting JSON objects withimgrsizes is not possible.
As MongoDB is the NO-SQL database with little restrictiongiothe structure of the
database, JSON objects with varying sizes can be insetedviongoDB with ease.
This flexibility offered by MongoDB influenced our decisiom $elect it over an SQL
based databasBymongdibrary was used to connect the web services with the Mongo

Database.

All the neural networks were developed in Kei@iollet (2015 with Tensorflow
Abadiet al. (2016 running in the back-end. The Gaussian Mixture Model wademp
mented in SklearfPedregosat al. (2011). the system was tested on MNIST Digits
LeCun and Corte2010 and MNIST FashiorXiao et al. (2017 data sets which were

available as a standard data-set in Keras.

The experimentation was carried out on a network of thregesyswith Intel Core
i7 Quad core. The three systems had 7.7GB, 7.7GB and 16GEhble RAM space.
The systems were connected using a Wi-Fi (802.11n) routiér aviink speed of 150

57

Mbps between each system and the router. All the micro-seswvere launched on

different systems.

58

CHAPTER 7

Conclusions and Future Directions

Various state-of-the-art systems have been studied antbthenon features have been
identified. A formalism for representation and study of witmlk systems at the funda-
mental level is presented here. The formalism offers higleglable and light-weight
architecture to create workflows for any problem scenawolinng the concept of mes-
sages and steps between processes. In the proposed systenkflaw itself can be
dynamically configured and deployed in the runtime withotgirupting the execution
of the system. A novel concept 8bw mutation in the formalism where the routing
logic can modify the message before delivering it to a nodetieduced. This offers
theoretical power to decouple a node from the routing logakimyg it very light weight.
Rendering as a servicdor user interface type nodes which are already made thin by
flow mutation concept is introduced. The formalism may bdized in any contempo-
rary technology of choice as demanded by a domain. A proobo€ept using Python
and Flask libraries has been presented. The system is Ecédabxecute on diverse
levels of hardware from high end computers to even low enddoices. In our PoC
implementation any node can be published and discovereddbyding its identifier
in the workflow messages. The nodes and workflows may be laisdd across sys-
tems and can be run on local machines in a secure way. Comatianmi®etween nodes
and workflows happens through micro service invocationsamggke system extremely
flexible and adaptable. The usefulness of the system in sTaampus and data genera-
tion use cases has been evaluated. This shows the usefafressformalism to build

a truly domain agnostic workflow system.

A formal representation of a workflow system is introducenhtbude the following

concepts -

» Formalism ofFlow Mutation- a novel concept, where router modifies or mutates
the message before delivering to the node

* Flow mutationresults in plug-n-play of workflow routing logic

» Formalism of condition based routing where target nodeeternined based on
message fields and their values

» Formalism of node actions amdndering as a servicefor user interaction type
nodes

» Event queue, node queue for continuous flow of data in theesys
» The formalism offersighly scalable and light-weight architecture to createri«o
flows for any problem scenario involving concept of messagdssteps between
processes
* Hence there is a system wheverkflow itself can be dynamically configured and
deployed in the runtime without interrupting the executidthe system
» The formalism is very generic and can be realized in anyarapbrary technol-
ogy of choice.
» The system has been deployedrdtt p: // servi ces.iittp.ac.in/ workflow.
Nodes’ messages are stored on its database. As evidentifeoworkflow architec-
ture, node messages are workflow, workflow processes thossages and sends the
data to the target node. The data floats between workflow ade imounits of time to
the workflow engine. The rate of providing this data to thekflow can be calculated

as time taken to process its data.

Appropriate time testing of the system was done and thetsesudre that the sys-
tem processed000messages ih8 seconds. Of course, the system depends on network
bandwidth, processor and memory, but the workflow systenaf@ee) is highly scal-

able, so throughput can be met with our own requirements.

Future directions: Integration of the workflow system with contemporary bldzi&in
technology and name based routing protocols can go fumib@device factors at scale.
On the user convenience front, a graphical interface fotimguogic needs to be pro-
vided. The proof of concept system requires better perfaomanalysis on metrics for
communication between nodes and workflows, storage andvatand user interface
response. The workflow system needs to provide a dashboarshaart application and
to be evaluated for battery and processing requirementsatfopm for creation, publi-
cation and market store for workflow applications on the galqaurpose system needs
to be provided to enable widespread use and to spin the whegtm-economy over
this open technology. Work is actively underway to provide teatures for suspend,

resume, fork, join need to be provisioned in the proof of emiémplementation.

Provision for compensatory workflows: Some actions in a Wovkneed to be un-
done and exception handling is a routine requirement in dnyi@strative or business
scenario. For this purpose, compensatory workflows neee tordated. In our pro-
posed architecture the compensatory workflows can be iadlag any other regular

workflows by just defining the routing logic and handling gxiten conditions.

60

http://services.iittp.ac.in/workflow

CHAPTER 8

Contributions

The original idea and architecture was proposed by Dr. laalid 2018 and majority
of the core engine for flow mutation and a placeholder coddeeng as a service was
written by him. Subsequently 2018 batch M.Tech studentgrex@nted with addition

of use cases. Our contributions in discussion with Dr. Kadidre additional functional-
ity to the core engine for provisioning a working subsystemréndering as a service,
concept of self service in node, and demonstration of usescls academics. MS
Scholar Suri Bhasker Sri Harsha also contributed in thehstitt data generation use

case with the workflow.

APPENDIX A

Installation

Installation of our software is pretty easy.

* Install the latest version of Python hefe:t ps: / / www. pyt hon. or g/ downl oads/

* Download MongoDB fromht t ps: // ww. nongodb. com t r y/ downl oad/
comuni ty. Install MongoDB Community Server and MongoDB Compass
from official Website for particular platform.

* Download our code fromht t ps: // gi t hub. com Sushm t ha999/ Wor kf | ow.

After installing Python and MongoDB, follow the these steps
Setting up a virtual environment (optional)
ForWindows:
* Install virtual environment:
py -mpip install --user virtual env
» Create a virtual environment:
py -mvenv env
* Activation:
.\env\ Scripts\activate
ForLinux/MacOS:
* Install virtual environment:
python3 -mpip install --user virtual env
» Create a virtual environment:
pyt hon3 -m venv env
* Activation:
source env/bin/activate
To use the software, use the following steps:
1. Run the following to install the required Python packages
python -mpip install -r requirenents.txt
2. Run the following once to insert docs into the database:

pip install add_collection. py

https://www.python.org/downloads/
https://www.mongodb.com/try/download/community
https://www.mongodb.com/try/download/community
https://github.com/Sushmitha999/Workflow

3. To start the flask server:
pyt hon vi ews. py
4. Start the workflow engine:
pyt hon process_Wwf . py
5. For academics use cases, run the background service:

pyt hon acads_bg. py

63

APPENDIX B

Call Flow Graph

The flow of interaction between the python functions in nogtiHTML files and JavaScript
functions is described here using 5 figures. The blue boxmesent the python func-
tions. The yellow boxes represent JavaScript functionse Eu boxes represent the
HTML files and if any JavaScript function is used in a HTML fitae yellow box with

the JavaScript function resides in the corresponding HT&tL_box.

The figureB.1represents the hierarchy of various HTML files where the ddyam|
is the main base file. The rest of the files are child files. Tlgeuathtml file contains
load_functions function which loads when the dashboardudex is loaded. The sub

functions of load_functions are also shown.

— —* template_btn
layout.html
—> fetchPendingJobs
load_functions®———
L——> getNotir
[ingexhtmi || toginntmi | | et profile.ntmi | [dashboara.ntmi | | registerntmi | [abouthtmi notifs.htm|
L 1 1 L 1 I
k.
[ade_tempiate.ntmi | [node_jobs.ntmi | | wr_renderer.ntmi | all_notifs.htm|
L 1 L 1 ———— 1

Figure B.1: The figure depicts the HTML file inheritance withybut.html as base
HTML file.

The figureB.2 shows the routing between the basic HTML files and the python

functions. The figurd.3 shows the routing for fetching and deleting notifications.

The figureB.4 describes the routing for adding templates which inclueseshing
templates, adding a selected template as a new job. It atsessthe rendering of jobs

and submitting a job.

The figureB.5 shows the flow of functions between the main workflow engirg an
the routing logic (conditions.py). The workflow engine (pess_wf.py) uses the func-
tions for making the necessary changes to the academicagesssThe functions are

present in acads_wf.py.

index.html -

login.html
login «—
°d logourt
;I dashboard.html I:
dashboard
editprofile register about
i Y v
edit_profile.html register.html about.html

Figure B.2: The figure depicts routing for basic HTML files

notifs > notifs.html

v :

getnotif getNotit
—|—; all_notifs.htmi

deleteNotif &

deletenotif <

Figure B.3: The figure depicts routing for adding templates jab rendering.

65

template_btn

l i get_templates

add_template.htm|

modal_temp

’ fetchPendinglobs &——» getjobs
l h 4
node_jobs.html
addjob e——» dynamic_wf_template | 7
renderjob < ® renderJob
v
wf_renderer.htm|
——> add_text
display_option
——> add_dropdown
add_inner
add field » add_checkfield
wf_sirsubmit < ® submitNode add_radiofield
v —> add_file
file
Figure B.4: The figure depicts routing for notifications.
other_wf.py
acads_wf.py
SRy | ' course registration"
process_wf.py = J
conditionHandler &—T—> €9 course_add_drop |

L4 htta_htra

| domain_specific_behaviour.py ‘

self_job

Figure B.5: The figure depicts flow of workflow engine for agaiz use cases as an
example.

66

=

10.

11.

REFERENCES

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean M. Devin, S. Ghemawat
G. Irving, M. Isard, M. Kudlur , J. Levenberg R. Monga, S. Moore, D. G. Murray ,
B. Steiner, P. Tucker, V. Vasudevan P. Warden, M. Wicke, Y. Yu, andX. Zheng,
Tensorflow: A system for large-scale machine learningl2th {USENIX} Symposium
on Operating Systems Design and Implementatf@SDI} 16). 2016.

G. Alonso, C. Mohan, R. Gunthor, D. Agrawal, A. El Abbadi, andM. Kamath, Ex-
otica/fmgm: A persistent message-based architecturesoitaited workflow manage-
ment. In Information Systems Development for Decentralized @agions Springer,
1995, 1-18.

l. Altintas , S. Purawat, D. Crawl, A. Singh, andK. Marcus (2019). Toward a method-
ology and framework for workflow-driven team sciendé@omputing in Science & En-
gineering 21(4), 37-48.

K. Amin, S. Kapetanakis K.-D. Althoff , A. Dengel andM. Petridis, Dynamic pro-
cess workflow routing using deep learning.International Conference on Innovative
Techniques and Applications of Artificial Intelligen&pringer, 2018.

Apache(2014). Apache airflowht t ps:// ai r f| ow. apache. or g.

A. Barker andJ. Van Hemert, Scientific workflow: a survey and research directions.
In International Conference on Parallel Processing and kggbMathematicsSpringer,
2007.

F. Betancourt, K. Wong, E. Asemota Q. Marshall, D. Nichols, and S. Tomoy,
opendiel: a parallel workflow engine and data analytics &awork. In Proceedings
of the Practice and Experience in Advanced Research Congpoti Rise of the Ma-
chines (learning)2019, 1-7.

K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. lvanov, C. Kid-
don, J. Konecny, S. Mazzocchj H. B. McMahan, V. T. Overveldt, D. Petrou, D. Ra-
mage andJ. Roselander(2019). Towards federated learning at scale: System design
arXiv preprint arXiv:1902.01046

J. Brzezinski, A. Danilecki, J. Flotynski, A. Kobusinska, andA. Stroinski, Workflow
engine supporting restful web servicdés Asian Conference on Intelligent Information
and Database Systernf3pringer, 2011.

J. Caog, S. A. Jarvis, S. Sainj andG. R. Nudd, Gridflow: Workflow management for
grid computing.In CCGrid 2003. 3rd IEEE/ACM International Symposium on<téu
Computing and the Grid, 2003. Proceedind&EE, 2003.

S. Ceri, P. Grefen, andG. Sanchez Wide-a distributed architecture for workflow man-
agement.In Proceedings Seventh International Workshop on Resdastles in Data
Engineering. High Performance Database Management fog&#Bcale Applications
IEEE, 1997.

67

https://airflow.apache.org

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

W. Chen, R. F. da Silva E. Deelman andT. Fahringer (2015). Dynamic and fault-
tolerant clustering for scientific workflowdEEE Transactions on Cloud Computing
4(1), 49-62.

F. Chollet (2015). Keras. URIht t ps: // gi t hub. com f chol | et/ ker as.

R. F. da Silva R. Filgueira, I. Pietri, M. Jiang, R. Sakellariou, andE. Deelman
(2017). A characterization of workflow management systemn&xtreme-scale appli-
cations.Future Generation Computer Systems, 228—238.

R. F. da Silva D. Garijo, S. Peckham Y. Gil, E. Deelman andV. Ratnakar, To-
wards model integration via abductive workflow compositeord multi-method scal-
able model executionin 9th International Congress on Environmental Modellingda
Software 2018.

E. Deelman R. F. da Silva K. Vahi, M. Rynge, R. Mayani, R. Tanaka, W. Whitcup,
andM. Livny (2020). The pegasus workflow management system: Transtom-
puter science in practicdournal of Computational Scienc#01200.

E. Deelman A. Mandal, M. Jiang, andR. Sakellariou (201%). The role of machine
learning in scientific workflowsThe International Journal of High Performance Com-
puting Applications33(6), 1128-1139.

E. Deelman K. Vahi, M. Rynge, R. Mayani, R. F. da Silva G. Papadimitriou,
andM. Livny (201%). The evolution of the pegasus workflow management software
Computing in Science & Engineeringl(4), 22—-36.

R. Filgueira, R. F. Da Silva A. Krause, E. Deelman andM. Atkinson, Asterism:
Pegasus and dispel4py hybrid workflows for data-intensiiense.ln 2016 Seventh In-
ternational Workshop on Data-Intensive Computing in theudk (DataCloud)IEEE,
2016.

Y. Gil, V. Ratnakar, J. Kim, P. Gonzalez-Calerg P. Groth, J. Moody, andE. Deel-
man (2010). Wings: Intelligent workflow-based design of congtiginal experiments.
IEEE Intelligent System&6(1), 62—72.

P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig (2000). Crossflow: Cross-
organizational workflow management in dynamic virtual gmises. Computer Sys-
tems Science & Engineering(ARTICLE), 277-290.

M. Grinberg, Flask web development: developing web applications withqgy "
O’Reilly Media, Inc.”, 2018.

C. R. Harris, K. J. Millman , S. J. van der Walt, R. Gommers P. Virtanen, D. Cour-
napeau E. Wieser, J. Taylor, S. Berg N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk , M. Brett, A. Haldane, J. F. del Rio, M. Wiebe, P. Peterson
P. Gérard-Marchant, K. Sheppard, T. Reddy, W. WeckesserH. Abbasi, C. Gohlke,
andT. E. Oliphant (2020). Array programming with numpyature 5857825), 357—
362.

T. Heinis, C. Pautassg andG. Alonso, Design and evaluation of an autonomic work-
flow engine.In Second International Conference on Autonomic CompytidgC’05).
IEEE, 2005.

68

https://github.com/fchollet/keras

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

C. Hoffa, G. Mehta, T. Freeman, E. Deelman K. Keahey, B. Berriman, andJ. Good,
On the use of cloud computing for scientific workflows. 2008 IEEE fourth interna-
tional conference on eSciend&EE, 2008.

M. Islam, A. K. Huang, M. Battisha, M. Chiang, S. Srinivasan C. Peters A. Neu-
mann, andA. Abdelnur, Oozie: towards a scalable workflow management system for
hadoop. In Proceedings of the 1st ACM SIGMOD Workshop on Scalablekigar
Execution Engines and Technologi2812.

B. K. JosephandO. Mosweu(). Integrating document workflow management system
in the business processes of a public institution.

G. Kappel, S. Rausch-SchottandW. Retschitzeggen2000). A framework for work-
flow management systems based on objects, rules and AG¥M. Computing Surveys
(CSUR) 32(1es), 27—es.

D. Krdl, R. F. da Silva E. Deelman andV. E. Lynch, Workflow performance profiles:
development and analysis$n European Conference on Parallel ProcessiSgringer,
2016.

Y. LeCun andC. Cortes (2010). MNIST handwritten digit database. URLt p: //
yann. | ecun. com exdb/ mmi st/ .

X. Li, J. Song andB. Huang (2016). A scientific workflow management system
architecture and its scheduling based on cloud servicéophatfor manufacturing big
data analyticsThe International Journal of Advanced Manufacturing Temlbgy, 84(1-
4),119-131.

B. Linke, R. Giegerich, andA. Goesmann(2011). Conveyor: a workflow engine for
bioinformatic analysesBioinformatics 27(7), 903-911.

Y. Liu, S. M. Khan, J. Wang, M. Rynge, Y. Zhang, S. Zeng S. Chen J. V. M.
Dos SantosB. Valliyodan, P. P. Calyam N. Merchant, H. T. Nguyen, D. Xu, and
T. Joshi, Pgen: large-scale genomic variations analysis workflogviaowser in soykb.
In BMC bioinformaticsvolume 17. BioMed Central, 2016.

B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger M. Jones E. A. Lee,
J. Tao, andY. Zhao (2006). Scientific workflow management and the kepler system
Concurrency and computation: Practice and experied@10), 1039-1065.

A. Mandal, P. Ruth, I. Baldin, R. F. Da Silva andE. Deelman Toward prioritization
of data flows for scientific workflows using virtual softwarefihed exchange$n 2017
IEEE 13th International Conference on e-Science (e-SeleheEE, 2017.

A. Mandal, P. Ruth, I. Baldin, Y. Xin, C. Castillo, G. Juve, M. Rynge, E. Deelman
andJ. Chase Adapting scientific workflows on networked clouds usinggutive in-
trospection. In 2015 IEEE/ACM 8th International Conference on Utilityda@loud
Computing (UCC)IEEE, 2015.

P. Missier, K. Belhajjame, J. Zhao, M. Roos, andC. Goble, Data lineage model for
taverna workflows with lightweight annotation requirensenin International Prove-
nance and Annotation Workshdppringer, 2008.

69

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

A. Mujezinovi € andV. Ljubovi €, Serverless architecture for workflow scheduling with
unconstrained execution environmerih 2019 42nd International Convention on In-
formation and Communication Technology, Electronics amctd&lectronics (MIPRQ)
IEEE, 2019.

H. Nawaz, G. Juve, R. F. Da Silva, andE. Deelman Performance analysis of an i/o-
intensive workflow executing on google cloud and amazon weelices.In 2016 IEEE
International Parallel and Distributed Processing Symipos Workshops (IPDPSW)
IEEE, 2016.

P. Neophytoy P. K. Chrysanthis, andA. Labrinidis , Confluence: Continuous work-
flow execution engineln Proceedings of the 2011 ACM SIGMOD International Con-
ference on Management of da011.

M. Pap, L. Z. Nagy, andD. Fekete(2020). Improving e-learning material quality with
the aid of deep learning and workflow management.

F. Pedregosa G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss V. Dubourg, J. Vanderplas, A. Passos
D. Cournapeau M. Brucher, M. Perrot, andE. Duchesnay(2011). Scikit-learn:
Machine learning in python.Journal of machine learning researcth2(Oct), 2825-
2830.

A. Pradhan andR. K. Joshi, Architecture of a light-weight non-threaded event ori-
ented workflow engineln Proceedings of the 8th ACM International Conference on
Distributed Event-Based Systerif14.

X. Qiu, C. Lan, B. You, andJ. Li, Information fusion in the applications of work-
flow management systenin 2019 IEEE 14th International Conference on Intelligent
Systems and Knowledge Engineering (ISHEEE, 2019.

S. Rinderle, M. Reichert, andP. Dadam Adept workflow management system: Flexi-
ble support for enterprise-wide business processes (teeeptation)In International
Conference on Business Process Managemehime 2678. 2003.

A. Robins (1995). Catastrophic forgetting, rehearsal and pseuéarshl.Connection
Science7(2), 123-146.

M. Rynge, S. Callaghan E. Deelman G. Juve, G. Mehta, K. Vahi, andP. J. Maech-
ling, Enabling large-scale scientific workflows on petascaleusses using mpi mas-
ter/worker. In Proceedings of the 1st Conference of the Extreme SciemdeEagi-
neering Discovery Environment: Bridging from the eXtreméhe campus and beyond
2012.

D. D. Sanchez-GallegasD. Di Luccio, J. L. Gonzalez-Compean andR. Montella,
Internet of things orchestration using dagon* workflow erglin 2019 IEEE 5th World
Forum on Internet of Things (WF-IoTEEE, 2019.

H. Shin, J. K. Lee, J. Kim, andJ. Kim (2017). Continual learning with deep generative
replay. arXiv preprint arXiv:1705.08690

C. Simpkin, I. Taylor, G. Bent, G. de Mel, andR. Ganti (2018). A scalable vector
symbolic architecture approach for decentralized workglow

70

51.

52.

53.

54.

55.

56.

S7.

B. S. H. SuriandK. Yeturu (2020). Pseudo rehearsal using non photo-realistic images
arXiv preprint arXiv:2004.13414

R. Tomsett G. Bent, C. Simpkin, I. Taylor, D. Harbourne, A. Preece andR. Ganti,
Demonstration of dynamic distributed orchestration oferoed iot workflows using a
vector symbolic architectureln 2019 IEEE International Conference on Smart Com-
puting (SMARTCOMP)EEE, 2019.

B. Tovar, R. F. da Silva G. Juve, E. Deelman W. Allcock, D. Thain, andM. Livny
(2017). A job sizing strategy for high-throughput sciewtifiorkflows. IEEE Transac-
tions on Parallel and Distributed Systen2§(2), 240-253.

K. Wolstencroft, R. Haines D. Fellows A. Williams, D. Withers, S. Owen
S. Soiland-Reyes|. Dunlop, A. Nenadic, P. Fisher, J. Bhagat K. Belhajjame,
F. Bacall, A. Hardisty, A. Nieva de la Hidalga M. P. Balcazar Vargas S. Sufi
andC. Goble (2013). The taverna workflow suite: designing and executiatkflows
of web services on the desktop, web or in the clobdicleic acids researc1(W1),
W557-W561.

H. Xiao, K. Rasul, andR. Vollgraf (2017). Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithnasXiv preprint arXiv:1708.07747

P.-C. Yang S. Purawat, P. U. leong M.-T. Jeng, K. R. DeMarco, |. Vorobyov, A. D.
McCulloch, I. Altintas, R. E. Amaro, andC. E. Clancy (2019). A demonstration of
modularity, reuse, reproducibility, portability and saaility for modeling and simula-
tion of cardiac electrophysiology using kepler workflow$.0S computational biology
15(3), e1006856.

Y. Yang, L. Zhang, andQ. Zhang, Constructing business simulation training platform
based on workflow management systenh$.2018 14th International Conference on
Computational Intelligence and Security (CISSEE, 2018.

71

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	ABBREVIATIONS
	INTRODUCTION
	Motivations
	State of the Art
	Gap Area
	Our contributions
	Organization of the thesis

	Background
	Microservices
	JSON
	Python-Flask
	WSGI
	Jinja2

	Bcrypt
	MongoDB
	Pymongo

	Proposed Workflow Engine
	Formal representation and reasoning
	Schematic of the system
	Features
	Domain Agnosticism
	Content-based Routing and Dynamic routing
	Flow Mutation
	Node Reuse
	Rendering as a Service
	Distributed Nature of Workflow System
	User-Interface Node
	Computational Node
	Web-API
	Light Weight
	IoT Enabled
	Communication Security
	Anonymity of Nodes

	Proof of concept using Python and Flask

	Results - Course Registration/AddDrop Forms
	About this Chapter
	Course Registration
	Add/Drop Course

	Results - HTTA/HTRA Forms
	HTTA/HTRA forms
	General

	Results - Data Generator based Continual Learning Systems for Edge Devices
	About this Chapter
	Remote Data Generation (RDG) architecture
	Prediction-Service
	Training-Service
	Data-Service

	Genetic Algorithm (GA) as a data generator
	General Adversarial Networks (GAN) as a data generator
	Guassian Mixture Models (GMM) as Data Generator
	Original Data as a service
	Implementation Details

	Conclusions and Future Directions
	 Contributions
	Installation
	Call Flow Graph

